Главная > Список учебников


Глава 3. ОСНОВЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

3.1. Элементы математической логики

Понятие «искусственный интеллект» возникло с появлением самых первых компьютерных программ, имитирующих интеллектуальную деятельность людей - игру в шахматы, шашки, доказательство теорем и решение задач на ЭВМ.

Все компьютерные программы, демонстрирующие интеллектуальное поведение, основаны на использовании определенного математичес­кого аппарата, опирающегося на законы математической логики. Без понимания этих законов невозможно понимание принципов работы вычислительных машин вообще и систем искусственного интеллекта в частности.

Логика - это наука, изучающая правильность суждений, рассуж­дений и доказательств. Примеры суждений: «снег белый», «22 = 5», «Земля круглая», «информатика - наука», «генетика - лженаука».

Суждения могут быть истинными или ложными. Истинность или ложность суждений проверяется их соответствием действительности. Пример истинного суждения - «снег белый». Пример ложного суж­дения - «генетика - лженаука».

Суждение истинно, если оно отражает действительное положение вещей. Примеры истинных суждений: «снег белый», «22 = 4», «театр - это искусство».

Суждение ложно, если оно противоречит истинному положению вещей. Примеры ложных утверждений - «22 = 5», «снег - черный», «Земля плоская».

Однако существуют суждения, об истинности или ложности которых нельзя судить однозначно. Пример таких суждений: «есть жизнь на Марсе», «машина может думать», «астрология - наука».

Математическая логика - это дисциплина, изучающая технику математических доказательств. Отличие математических суждений от обычных разговорных высказываний состоит в том, что математи­ческие суждения всегда предполагают однозначную интерпретацию, в то время как наши обычные высказывания зачастую допускают многозначную трактовку.

Математика - наука, признающая исключительно только одно­значные суждения, утверждения и допускающая только строгие до­казательства. В то время как люди в своих рассуждениях и высказы­ваниях допускают различного рода неточности и двусмысленности.

Работа ЭВМ как автоматических устройств основана исключи­тельно на математически строгих правилах выполнения команд, программ и интерпретации данных. Тем самым работа компьютеров допускает строгую однозначную проверку правильности своей работы в плане заложенных в них процедур и алгоритмов обработки инфор­мации.

Фундаментом науки о вычислительных машинах является конст­руктивная математика, в основе которой лежит математическая ло­гика и теория алгоритмов с их однозначностью в оценке суждений и процедур вывода. Математическая логика с самого начала использо­валась для описания элементов и узлов ЭВМ, а теория алгоритмов - для описания компьютерных программ.

Основными объектами в математической логике являются - высказывания и предикаты. Первые изучаются в исчислении выска­зываний, а вторые - в исчислении предикатов.

Высказывания - это суждения, о которых может быть известно - что они истины или ложны. В исчислении высказываний не иссле­дуется - о чем утверждается в этих суждениях.

Высказывания обычно обозначаются отдельными буквами или буквами с возможными индексами. Примеры простых высказываний и их обозначений:

А = «снег белый»

В1 = «вода теплая»

В2 = «земля твердая»

С математической точки зрения высказывания - это перемен­ные, принимающие значения «истина» или «ложь». Эти два истин­ностных значения иногда заменяются словами «да», «нет», либо цифрами 1 и 0.

В отличии от высказываний предикаты - это суждения о некото­рых переменных объектах или их свойствах. Примеры предикатов:

А(х) = «цвет яблока -х»

В(х,у) = «х < у»

где х, у - это некоторые переменные (объекты).

Значениями переменных в предикатах могут быть числа, слова, вектора, списки, функции, процедуры, алгоритмы или даже про­граммы. Для математической логики существенно, чтобы эти пере­менные объекты имели конструктивную форму и были бы строго определены.

С математической точки зрения предикаты - это функции, име­ющие одну или несколько переменных и принимающие логические значения «истина» или «ложь». Обозначения предикатов в матема­тической логике схожи с обозначениями обычных математических функций: Р(х), Q(x,y)и т. д.

В информатике для обозначения переменных, функций и предика­тов, а также их аргументов обычно используются осмысленные сло­ва и словосочетания в целях простоты их ввода в ЭВМ. Например, предикаты, используемые для описания фактов в языке Пролог, обыч­но имеют обозначения, выражаемые в лексике родного языка:

любит (Маша, х);

цена (конфеты, с).

В форме предикатов с конкретными аргументами-значениями могут быть описаны факты любой базы данных. Примеры описания фактов из базы данных в записи на языке Пролог:

любит (Маша, цветы) - Маша любит цветы

любит (Саша, машины) - Саша любит машины

цена (цветы, 1000) - цена цветов 1000

цена (мороженое, 2500) - цена морженого 2500

В этой же форме предикатов с переменными могут описываться и простейшие запросы к базам данных на языке Пролог. Примеры запросов к указанной базе данных на языке Пролог и соответствую­щие ответы ЭВМ:

? любит(х, конфеты) - Кто любит конфеты?

х = Маша

? цена (конфеты, с) - Какова цена конфет?

с = 1000

В о п р о с ы

1. Что изучает математическая логика?

2. Что изучает логика?

3. Что такое высказывание?

4. Что такое предикат?

5. Когда суждения истинны?

6. Когда суждения ложны?

З а д а ч и

1. Приведите примеры истинных и ложных утверждений

а) из арифметики;

б) из геометрии;

в) из биологии;

г) из жизни.

2. Выразите отрицания для высказываний:

а) «мы пойдем в кино»;

б) «х = 0 или х = 1»;

в) «х = 0 и у = 0»;

г) «а = 0 и b = 0 и с = 0»;

д) «х = 0 или у = 0 или z = 0».

е) «мы не пойдем никуда»;

ж) «а = 0 или b = 0»;

з) «х > 0 и х < 100».

3.2. Основные логические операции

Суждения в математической логике могут быть простыми и сложносоставными. Примеры простых суждений:

х = 1 рост < 160

А цена (х, у)

Сложносоставные суждения в математической логике образуются из простых с помощью логических связок и, или и не, выражающих три основных логических операции:

логическая связка не - отрицание суждений;

логическая связка или - конъюнкция суждений;

логическая связка и - дизъюнкция суждений.

Примеры сложносоставных суждений:

не А - неверно суждениеА

С или В - истинноС или В

(х > 0) и (у > 0) - (хбольше 0) и (убольше 0)

(глаза = синие) или (глаза = голубые)

Логическая связка не используется для выражения отрицаний. Примеры:

не (глаза = синие), - неверно, что глаза синие

не или В), - неверно, что выполняется А или В

не (любит (Саша, конфеты)) - неверно, что Саша любит конфеты

Наглядной иллюстрацией этих логических связок с предикатами служат следующие диаграммы:

Отрицание не А истинно или ложно в зависимости от истинности исходного суждения А. Свойства отрицания не как логической связки можно описать таблицей истинности:

Таблица истинности:

А не А

да

нет

нет

да

Свойства отрицаний:

НЕ1: Отрицание ложно, если суждение истинно.

НЕ2: Отрицание истинно, если суждение ложно.

Для понимания отрицаний важно уметь выражать их в позитивной форме. Приведем примеры отрицания математических неравенств и их позитивные переформулировки:

не (х = 0)  (х  0)

не (х  0)  (х = 0)

не (х > 0)  (х  0)

не (х < 0)  (х  0)

не (х  0)  (х < 0)

не (х  0)  (х > 0)

Свойства отрицаний, записанные в таблицу истинностности, могут быть описаны как факты на языке Пролог:

не (да, нет);

не (нет, да);

После ввода этих фактов в ЭВМ с помощью запросов можно перепроверить свойства отрицаний:

? не(А, нет)

А = да

? не (А, да)

А = нет

Логическая связка и в математической логике называется конъ­юнкцией. Таблица истинности конъюнкции:

А В А и В

да

да

да

да

нет

нет

нет

да

нет

нет

нет

нет

Свойства конъюнкции:

И1: Конъюнкция А и В истинна, когда истинны оба суждения.

И 2: Конъюнкция А и В ложна, когда ложно хотя бы одно из суж­дений А или В.

Логическая связка или в математической логике называется дизъ­юнкцией. Таблица истинности дизъюнкции:

А В А или В

да

да

да

да

нет

да

нет

да

да

нет

нет

нет

Свойства дизъюнкции:

ИЛИ1: Дизъюнкция А или В истинна, когда истинно любое из суждений А или В.

ИЛИ2: Дизъюнкция А или В ложна, когда ложны оба суждения А и В.

Свойства конъюнкции и дизъюнкции также можно описать в виде фактов на языке Пролог:

Дизъюнкция:Конъюнкция:

или (да, да, да); и2 (да, да, да);

или (да, нет, да); и2 (да, нет, нет);

или (нет, да, да); и2 (нет, да, нет);

или (нет, нет, нет); и2 (нет, нет, нет);

Опираясь на эти факты можно получить ответы на вопросы о свойствах дизъюнкции и конъюнкции с помощью ЭВМ:

? или (А, В, нет) ? и 2 (А, В, да)

А = нет В = нет А = да В = да

? или (А, В, да) ? и 2 (А, В, нет)

А = да В = да А = да В = нет

А = да В = нет А = нет В = да

А = нет В = да А = нет В = нет

Одной из важнейших логических связок математической логики является импликация А В. Эта связка в математической логике используется для определения правил логического вывода.

ИмпликацияА В - это логическое следование. Импликация А В читается: «если А, то В». Первое суждение в импликации называется посылкой, а второе суждение - следствием.

Приведем примеры правил логического вывода:

а) с использованием высказываний:

если «на улице дождь», то «на улице мокро»,

б) с использованием предикатов:

любит (х, конфеты) сластена (х).

Таблица истинности импликации:

А В А В

да

да

да

да

нет

нет

нет

да

да

нет

нет

да

Свойства импликации:

П1: «Импликация А  В ложна,

когда посылка А истинна, а следствие В - ложно».

П2: «Импликация А  В истинна,

когда истинно следствие либо ложны и посылка и следствие».

В языке Пролог импликации используются для описания правил вывода и определения новых логических понятий. Например, поня­тие «сластена» в языке .Пролог описывается следующим образом:

сластена (х) любит (х, конфеты);

Описание этого правила позволяет вводить в ЭВМ вопросы о «сластенах» и получать осмысленные ответы, исходя из сведений, хранящихся в базе данных:

? сластена (х) - Кто сластена?

х = Маша

С помощью таблиц истинности могут быть описаны и проверены свойства любых сложносоставных высказываний. Соответственно с помощью этих таблиц на ЭВМ средствами языка Пролог могут быть проверены любые сложносоставные высказывания и законы исчис­ления высказываний.

Задача 1. Проверьте закон двойного отрицания в исчислении высказываний

не (не А)  А

Р е ш е н и е . Рассмотрим объединенную таблицу истинности вы­сказываний

А не А не (неА)

да

нет

да

нет

да

нет

Сравнение крайних столбцов показывает, что всюду, где выска­зывание А истинно, там же истинно и двойное отрицание не (не А). И наоборот, всюду, где ложно А, там ложно и двойное отрицание не (не А). Следовательно, двойное отрицание тождественно исходному высказыванию: не (не А)  А.

Задача 2. Сравните с помощью таблиц истинности отрицание дизъюнкции и отрицание конъюнкции неи В) и неили В).

Р е ш е н и е .

АВА и В не (А и В) А или В не (А или В)

да

да

да

нет

да

нет

да

нет

нет

да

да

нет

нет

да

нет

да

да

нет

нет

нет

нет

да

нет

да

В о п р о с ы

1. Когда истинно отрицание?

2. Когда ложна дизъюнкция?

3. Когда истинна конъюнкция?

4. Когда ложна импликация?

З а д а н и е

1. Составьте таблицы истинности для утверждений:

а) (не А) и (не В); в) (не А) или (не В);

б) А и (не В); г) А или (не В).

2. Сравните с помощью таблиц истинности логические выражения:

а) неи В); в) (не А) или (не В);

б) неи В); г) (не А) или (не В).

3. Проверьте по таблицам истинности логические законы:

а) отрицание конъюнкции:

неи В) = (не А) или (не В);

б) отрицание дизъюнкции:

неили В) = (не А) и (не В);

в) отрицание импликации:

не (А  В)  (не В)  (не А).



Скачать документ

Похожие документы:

  1. УЧЕБНИК Рекомендовано Научно-методическим советом по философии Министерства образования Российской Федерации в качестве учебника по курсу «Философия» для студентов высших учебных заведений Издание третье

    Список учебников
    ... Министерства образования РоссийскойФедерации в качествеучебника по курсу «Философия» длястудентоввысшихучебныхзаведений Издание третье, ... которых философия, психология, биофизика, информатика, кибернетика, юриспруденция, психиатрия. Вследствие ...
  2. В качестве учебного пособия для студентов высших учебных заведений обучающихся по педагогическим специальностям

    Документ
    ... Министерством образования РоссийскойФедерации в качествеучебного пособия длястудентоввысшихучебныхзаведений, обучающихся по педагогическим ... . Эти учебники получили широкое распространение в протестантских учебныхзаведениях. Меланхтон ...
  3. В качестве учебного пособия для студентов высших учебных заведений обучающихся по педагогическим специальностям

    Документ
    ... Министерством образования РоссийскойФедерации в качествеучебного пособия длястудентоввысшихучебныхзаведений, обучающихся по педагогическим ... . Эти учебники получили широкое распространение в протестантских учебныхзаведениях. Меланхтон ...
  4. Под редакцией профессора образования Российской Федерации в качестве учебника для студентов высших учебных заведений

    Список учебников
    ... Максимова Допущено Министерством образования РоссийскойФедерации в качествеучебникадлястудентоввысшихучебныхзаведений, обучающихся по гуманитарным специальностям ... реклама или публикации по информатике, экономике, современному музыкальному ...
  5. Лауреат всероссийского конкурса по созданию новых учебников по общим естественнонаучным дисциплинам для студентов высших учебных заведений

    Конкурс
    ... новых учебников по общим естественнонаучным дисциплинам длястудентоввысшихучебныхзаведений Т.А. ... Министерством образования РоссийскойФедерации в качествеучебникадлястудентов технических ... микроэлектроникой и информатикой (робототехника, гибкое ...

Другие похожие документы..