Главная > Контрольные вопросы


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ М.В. ЛОМОНОСОВА
ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ
МАТЕМАТИКИ И КИБЕРНЕТИКИ

Баяковский Ю.М., Игнатенко А.В., Фролов А.И.

Графическая библиотека OpenGL


методическое пособие

Москва
2002

УДК 681.3

Предисловие

Содержание

Введение 7

Глава 1. Основы OpenGL 9

1.1. Основные возможности 9

1.2. Интерфейс OpenGL 9

1.3. Архитектура OpenGL 11

1.4. Синтаксис команд 13

1.5. Пример приложения 14

Контрольные вопросы: 18

Глава 2. Рисование геометрических объектов 19

2.1. Процесс обновления изображения 19

2.2. Вершины и примитивы 20

2.3. Операторные скобки glBegin / glEnd 22

2.4. Дисплейные списки 26

2.5. Массивы вершин 28

Контрольные вопросы 29

Глава 3. Преобразования объектов 31

3.1. Работа с матрицами 31

3.2. Модельно-Видовые преобразования 33

3.3. Проекции 35

3.4. Область вывода 37

Контрольные вопросы 38

Глава 4. Материалы и освещение 39

4.1. Модель освещения 39

4.2. Спецификация материалов 40

4.3. Описание источников света 42

4.4. Создание эффекта тумана 45

Контрольные вопросы 46

Глава 5. Текстурирование 47

5.1. Подготовка текстуры 47

5.2. Наложение текстуры на объекты 50

5.3. Текстурные координаты 52

Контрольные вопросы 55

Глава 6. Операции с пикселями 56

6.1. Смешивание изображений. Прозрачность 57

6.2. Буфер-накопитель 58

6.3. Буфер маски 60

6.4. Управление растеризацией 61

Глава 7. Приемы работы с OpenGL 63

7.1. Устранение ступенчатости 63

7.2. Построение теней 64

7.3. Зеркальные отражения 69

Глава 8. Оптимизация программ 73

8.1. Организация приложения 73

8.2. Оптимизация вызовов OpenGL 77

Приложение A. Структура GLUT-приложения 86

Приложение A. Примитивы библиотек GLU и GLUT 90

Приложение A. Настройка приложений OpenGL 93

A.1. Создание приложения в среде Borland C++ 5.02 93

A.2. Создание приложения в среде MS Visual C++ 6.0 94

Приложение B. Демонстрационные программы 95

B.1. Пример 1: Простое GLUT-приложение 95

B.2. Пример 2: Модель освещения OpenGL 97

B.3. Пример 3: Текстурирование 101

Приложение C. Примеры практических заданий 108

C.1. Cornell Box 108

C.2. Виртуальные часы 109

C.3. Интерактивный ландшафт 111

Литература 117

Предметный указатель 118

Введение

OpenGL является одним из самых популярных прикладных программных интерфейсов (API – Application Programming Interface) для разработки приложений в области двумерной и трехмерной графики.

Стандарт OpenGL (Open Graphics Library – открытая графическая библиотека) был разработан и утвержден в 1992 году ведущими фирмами в области разработки программного обеспечения как эффективный аппаратно-независимый интерфейс, пригодный для реализации на различных платформах. Основой стандарта стала библиотека IRIS GL, разработанная фирмой Silicon Graphics Inc.

Библиотека насчитывает около 120 различных команд, которые программист использует для задания объектов и операций, необходимых для написания интерактивных графических приложений.

На сегодняшний день графическая система OpenGL поддерживается большинством производителей аппаратных и программных платформ. Эта система доступна тем, кто работает в среде Windows, пользователям компьютеров Apple. Свободно распространяемые коды системы Mesa (пакет API на базе OpenGL) можно компилировать в большинстве операционных систем, в том числе в Linux.

Характерными особенностями OpenGL, которые обеспечили распространение и развитие этого графического стандарта, являются:

  • Стабильность. Дополнения и изменения в стандарте реализуются таким образом, чтобы сохранить совместимость с разработанным ранее программным обеспечением.

  • Надежность и переносимость. Приложения, использующие OpenGL, гарантируют одинаковый визуальный результат вне зависимости от типа используемой операционной системы и организации отображения информации. Кроме того, эти приложения могут выполняться как на персональных компьютерах, так и на рабочих станциях и суперкомпьютерах.

  • Легкость применения. Стандарт OpenGL имеет продуманную структуру и интуитивно понятный интерфейс, что позволяет с меньшими затратами создавать эффективные приложения, содержащие меньше строк кода, чем с использованием других графических библиотек. Необходимые функции для обеспечения совместимости с различным оборудованием реализованы на уровне библиотеки и значительно упрощают разработку приложений.

Наличие хорошего базового пакета для работы с трехмерными приложениями упрощает понимание студентами ключевых тем курса компьютерной графики – моделирование трехмерных объектов, закрашивание, текстурирование, анимацию и т.д. Широкие функциональные возможности OpenGL служат хорошим фундаментом для изложения теоретических и практических аспектов предмета.

Глава 1.Основы OpenGL

1.1.Основные возможности

Описывать возможности OpenGL мы будем через функции его библиотеки. Все функции можно разделить на пять категорий:

  • Функции описания примитивов определяют объекты нижнего уровня иерархии (примитивы), которые способна отображать графическая подсистема. В OpenGL в качестве примитивов выступают точки, линии, многоугольники и т.д.

  • Функции описания источников света служат для описания положения и параметров источников света, расположенных в трехмерной сцене.

  • Функции задания атрибутов. С помощью задания атрибутов программист определяет, как будут выглядеть на экране отображаемые объекты. Другими словами, если с помощью примитивов определяется, что появится на экране, то атрибуты определяют способ вывода на экран. В качестве атрибутов OpenGL позволяет задавать цвет, характеристики материала, текстуры, параметры освещения.

  • Функции визуализации позволяет задать положение наблюдателя в виртуальном пространстве, параметры объектива камеры. Зная эти параметры, система сможет не только правильно построить изображение, но и отсечь объекты, оказавшиеся вне поля зрения.

  • Набор функций геометрических преобразований позволяют программисту выполнять различные преобразования объектов – поворот, перенос, масштабирование.

При этом OpenGL может выполнять дополнительные операции, такие как использование сплайнов для построения линий и поверхностей, удаление невидимых фрагментов изображений, работа с изображениями на уровне пикселей и т.д.

1.2.Интерфейс OpenGL

OpenGL состоит из набора библиотек. Все базовые функции хранятся в основной библиотеке, для обозначения которой в дальнейшем мы будем использовать аббревиатуру GL. Помимо основной, OpenGL включает в себя несколько дополнительных библиотек.

Первая из них – библиотека утилитGL(GLUGLUtility). Все функции этой библиотеки определены через базовые функции GL. В состав GLU вошла реализация более сложных функций, таких как набор популярных геометрических примитивов (куб, шар, цилиндр, диск), функции построения сплайнов, реализация дополнительных операций над матрицами и т.п.

OpenGL не включает в себя никаких специальных команд для работы с окнами или ввода информации от пользователя. Поэтому были созданы специальные переносимые библиотеки для обеспечения часто используемых функций взаимодействия с пользователем и для отображения информации с помощью оконной подсистемы. Наиболее популярной является библиотека GLUT (GL Utility Toolkit). Формально GLUT не входит в OpenGL, но de facto включается почти во все его дистрибутивы и имеет реализации для различных платформ. GLUT предоставляет только минимально необходимый набор функций для создания OpenGL-приложения. Функционально аналогичная библиотека GLX менее популярна. В дальнейшем в этом пособии в качестве основной будет рассматриваться GLUT.

Рис. 1 Организация библиотеки OpenGL




Кроме того, функции, специфичные для конкретной оконной подсистемы, обычно входят в ее прикладной программный интерфейс. Так, функции, поддерживающие выполнение OpenGL, есть в составе Win32 API и X Window. На рисунке схематически представлена организация системы библиотек в версии, работающей под управлением системы Windows. Аналогичная организация используется и в других версиях OpenGL.

1.3.Архитектура OpenGL

Функции OpenGL реализованы в модели клиент-сервер. Приложение выступает в роли клиента – оно вырабатывает команды, а сервер OpenGL интерпретирует и выполняет их. Сам сервер может находиться как на том же компьютере, на котором находится клиент (например, в виде динамически загружаемой библиотеки – DLL), так и на другом (при этом может быть использован специальный протокол передачи данных между машинами).

GL обрабатывает и рисует в буфере кадра графические примитивы с учетом некоторого числа выбранных режимов. Каждый примитив – это точка, отрезок, многоугольник и т.д. Каждый режим может быть изменен независимо от других. Определение примитивов, выбор режимов и другие операции описываются с помощью команд в форме вызовов функций прикладной библиотеки.

Примитивы определяются набором из одной или более вершин (vertex). Вершина определяет точку, конец отрезка или угол многоугольника. С каждой вершиной ассоциируются некоторые данные (координаты, цвет, нормаль, текстурные координаты и т.д.), называемые атрибутами. В подавляющем большинстве случаев каждая вершина обрабатывается независимо от других.

С точки зрения архитектуры графическая система OpenGL является конвейером, состоящим из нескольких последовательных этапов обработки графических данных.

Команды OpenGL всегда обрабатываются в том порядке, в котором они поступают, хотя могут происходить задержки перед тем, как проявится эффект от их выполнения. В большинстве случаев OpenGL предоставляет непосредственный интерфейс, т.е. определение объекта вызывает его визуализацию в буфере кадра.

С точки зрения разработчиков, OpenGL – это набор команд, которые управляют использованием графической аппаратуры. Если аппаратура состоит только из адресуемого буфера кадра, тогда OpenGL должен быть реализован полностью с использованием ресурсов центрального процессора. Обычно графическая аппаратура предоставляет различные уровни ускорения: от аппаратной реализации вывода линий и многоугольников до изощренных графических процессоров с поддержкой различных операций над геометрическими данными.

Рис. 2. Функционирование конвейера OpenGL




OpenGL является прослойкой между аппаратурой и пользовательским уровнем, что позволяет предоставлять единый интерфейс на разных платформах, используя возможности аппаратной поддержки.

Кроме того, OpenGL можно рассматривать как конечный автомат, состояние которого определяется множеством значений специальных переменных и значениями текущей нормали, цвета, координат текстуры и других атрибутов и признаков. Вся эта информация будет использована при поступлении в графическую систему координат вершины для построения фигуры, в которую она входит. Смена состояний происходит с помощью команд, которые оформляются как вызовы функций.

1.4.Синтаксис команд

Определения команд GL находятся в файле gl.h, для включения которого нужно написать

#include

Для работы с библиотекой GLU нужно аналогично включить файл glu.h. Версии этих библиотек, как правило, включаются в дистрибутивы систем программирования, например Microsoft Visual C++ или Borland C++ 5.02.

В отличие от стандартных библиотек, пакет GLUT нужно инсталлировать и подключать отдельно. Подробная информация о настройке сред программирования для работы с OpenGL дана в Приложении С.

Все команды (процедуры и функции) библиотеки GL начинаются с префикса gl, все константы – с префикса GL_. Соответствующие команды и константы библиотек GLU и GLUT аналогично имеют префиксы glu (GLU_) и glut (GLUT_)

Кроме того, в имена команд входят суффиксы, несущие информацию о числе и типе передаваемых параметров. В OpenGL полное имя команды имеет вид:

type glCommand_name[1 2 3 4][b s i f d ub us ui][v]
(type1 arg1,…,typeN argN)

Имя состоит из нескольких частей:

gl имя библиотеки, в которой описана эта функция: для базовых функций OpenGL, функций из библиотек GL, GLU, GLUT, GLAUX это gl, glu, glut, aux соответственно.

Command_name имя команды (процедуры или функции)

[1 2 3 4] число аргументов команды

[bsifdubusui] тип аргумента: символ b – GLbyte (аналог char в С\С++), символ i – GLint (аналог int), символ f – GLfloat (аналог float) и так далее. Полный список типов и их описание можно посмотреть в файле gl.h

[v] наличие этого символа показывает, что в качестве параметров функции используется указатель на массив значений

Символы в квадратных скобках в некоторых названиях не используются. Например, команда glVertex2i() описана в библиотеке GL, и использует в качестве параметров два целых числа, а команда glColor3fv() использует в качестве параметра указатель на массив из трех вещественных чисел.

Использования нескольких вариантов каждой команды можно частично избежать, применяя перегрузку функций языка C++. Но интерфейс OpenGL не рассчитан на конкретный язык программирования, и, следовательно, должен быть максимально универсален.

1.5.Пример приложения

Типичная программа, использующая OpenGL, начинается с определения окна, в котором будет происходить отображение. Затем создается контекст (клиент) OpenGL и ассоциируется с этим окном. Далее программист может свободно использовать команды и операции OpenGL API.

Ниже приведен текст небольшой программы, написанной с использованием библиотеки GLUT – своеобразный аналог классического примера “Hello, World!”.

Все, что делает эта программа – рисует в центре окна красный квадрат. Тем не менее, даже на этом простом примере можно понять принципы программирования с помощью OpenGL.

#include

/* подключаем библиотеку GLUT */

#include

/* начальная ширина и высота окна */

GLint Width = 512, Height = 512;

/* размер куба */

const int CubeSize = 200;

/* эта функция управляет всем выводом на экран */

void Display(void)

{

int left, right, top, bottom;

left = (Width - CubeSize) / 2;

right = left + CubeSize;

bottom = (Height - CubeSize) / 2;

top = bottom + CubeSize;

glClearColor(0, 0, 0, 1);

glClear(GL_COLOR_BUFFER_BIT);

glColor3ub(255,0,0);

glBegin(GL_QUADS);

glVertex2f(left,bottom);

glVertex2f(left,top);

glVertex2f(right,top);

glVertex2f(right,bottom);

glEnd();

glFinish();

}

/* Функция вызывается при изменении размеров окна */

void Reshape(GLint w, GLint h)

{

Width = w;

Height = h;

/* устанавливаем размеры области отображения */

glViewport(0, 0, w, h);

/* ортографическая проекция */

glMatrixMode(GL_PROJECTION);

glLoadIdentity();

glOrtho(0, w, 0, h, -1.0, 1.0);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

}

/* Функция обрабатывает сообщения от клавиатуры */

void

Keyboard( unsigned char key, int x, int y )

{

#define ESCAPE '\033'

if( key == ESCAPE )

exit(0);

}

/* Главный цикл приложения */

main(int argc, char *argv[])

{

glutInit(&argc, argv);

glutInitDisplayMode(GLUT_RGB);

glutInitWindowSize(Width, Height);

glutCreateWindow(";Red square example";);

glutDisplayFunc(Display);

glutReshapeFunc(Reshape);

glutKeyboardFunc(Keyboard);

glutMainLoop();

}

Несмотря на малый размер, это полностью завершенная программа, которая должна компилироваться и работать на любой системе, поддерживающей OpenGL и GLUT.

Библиотека GLUT поддерживает взаимодействие с пользователем с помощью так называемых функций c обратным вызовом (callbackfunction). Если пользователь подвинул мышь, нажал на кнопку клавиатуры или изменил размеры окна, происходит событие и вызывается соответствующая функция пользователя – обработчик событий (функция с обратным вызовом).

Рассмотрим более подробно функцию main данного примера. Она состоит из трех частей – инициализации окна, в котором будет рисовать OpenGL, настройки функций c обратным вызовом и главного цикла обработки событий.

Инициализация окна состоит из настройки соответствующих буферов кадра, начального положения и размеров окна, а также заголовка окна.

Функция glutInit(&argc, argv) производит начальную инициализацию самой библиотеки GLUT.

Команда glutInitDisplayMode(GLUT_RGB) инициализирует буфер кадра и настраивает полноцветный (непалитровый) режим RGB.

glutInitWindowSize(Width, Height) используется для задания начальных размеров окна.

Наконец, glutCreateWindow(";Red square example";) задает заголовок окна и визуализирует само окно на экране.

Затем команды

glutDisplayFunc(Display);

glutReshapeFunc(Reshape);

glutKeyboardFunc(Keyboard);

регистрируют функции Display(), Reshape() и Keyboard() как функции, которые будут вызваны, соответственно, при перерисовке окна, изменении размеров окна, нажатии клавиши на клавиатуре.

Контроль всех событий и вызов нужных функций происходит внутри бесконечного цикла в функции glutMainLoop()

Заметим, что библиотека GLUT не входит в состав OpenGL, а является лишь переносимой прослойкой между OpenGL и оконной подсистемой, предоставляя минимальный интерфейс. OpenGL-приложение для конкретной платформы может быть написано с использованием специфических API (Win32, X Window и т.д.), которые как правило предоставляют более широкие возможности.

Более подробно работа с библиотекой GLUT описана в Приложении А.

Все вызовы команд OpenGL происходят в обработчиках событий. Более подробно они будут рассмотрены в следующих главах. Сейчас обратим внимание на функцию Display, в которой сосредоточен код, непосредственно отвечающий за рисование на экране.

Следующая последовательность команд из функции Display

glClearColor(0, 0, 0, 1);

glClear(GL_COLOR_BUFFER_BIT);

glColor3ub(255,0,0);

glBegin(GL_QUADS);

glVertex2f(left,bottom);

glVertex2f(left,top);

glVertex2f(right,top);

glVertex2f(right,bottom);

glEnd();

очищает окно и выводит на экран квадрат, задавая координаты четырех угловых вершин и цвет.

В приложении B.1 приведен еще один пример несложной программы, при нажатии кнопку мыши рисующей на экране разноцветные случайные прямоугольники.

Контрольные вопросы:

  1. В чем, по вашему мнению, заключается необходимость создания стандартной графической библиотеки?

  2. Кратко опишите архитектуру библиотек OpenGL и организацию конвейера.

  3. Назовите категории команд (функций) библиотеки.

  4. Зачем нужны различные варианты команд OpenGL, отличающиеся только типами параметров?

  5. Почему организацию OpenGL часто сравнивают с конечным автоматом?

Глава 2.Рисование геометрических объектов

2.1.Процесс обновления изображения

Как правило, задачей программы, использующей OpenGL, является обработка трехмерной сцены и интерактивное отображение в буфере кадра. Сцена состоит из набора трехмерных объектов, источников света и виртуальной камеры, определяющей текущее положение наблюдателя.

Обычно приложение OpenGL в бесконечном цикле вызывает функцию обновления изображения в окне. В этой функции и сосредоточены вызовы основных команд OpenGL. Если используется библиотека GLUT, то это будет функция с обратным вызовом, зарегистрированная с помощью вызова glutDisplayFunc(). GLUT вызывает эту функцию, когда операционная система информирует приложение о том, что содержимое окна необходимо перерисовать (например, если окно было перекрыто другим). Создаваемое изображение может быть как статичным, так и анимированным, т.е. зависеть от каких-либо параметров, изменяющихся со временем. В этом случае лучше вызывать функцию обновления самостоятельно. Например, с помощью команды glutPostRedisplay(). За более подробной информацией можно обратиться к приложению A.

Приступим, наконец, к тому, чем занимается типичная функция обновления изображения. Как правило, она состоит из трех шагов:

  1. очистка буферов OpenGL;

  2. установка положения наблюдателя;

  3. преобразование и рисование геометрических объектов.

Очистка буферов производится с помощью команды:

void glClearColor ( clampf r, clampf g, clampf b,
clampf a )

void glClear(bitfield buf)

КомандаglClearColor устанавливает цвет, которым будет заполнен буфер кадра. Первые три параметра команды задают R,G и B компоненты цвета и должны принадлежать отрезку [0,1]. Четвертый параметр задает так называемую альфа компоненту (см. п. 6.1). Как правило, он равен 1. По умолчанию цвет – черный (0,0,0,1).

Команда glClear очищает буферы, а параметр buf определяет комбинацию констант, соответствующую буферам, которые нужно очистить (см. главу 6). Типичная программа вызывает команду

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)

для очистки буферов цвета и глубины.

Установка положения наблюдателя и преобразования трехмерных объектов (поворот, сдвиг и т.д.) контролируются с помощью задания матриц преобразования. Преобразования объектов и настройка положения виртуальной камеры описаны в главе 3.

Сейчас сосредоточимся на том, как передать в OpenGL описания объектов, находящихся в сцене. Каждый объект является набором примитивов OpenGL.

2.2.Вершины и примитивы

Вершина является атомарным графическим примитивом OpenGL и определяет точку, конец отрезка, угол многоугольника и т.д. Все остальные примитивы формируются с помощью задания вершин, входящих в данный примитив. Например, отрезок определяется двумя вершинами, являющимися концами отрезка.

С каждой вершиной ассоциируются ее атрибуты. В число основных атрибутов входят положение вершины в пространстве, цвет вершины и вектор нормали.

2.2.1.Положение вершины в пространстве

Положение вершины определяются заданием ее координат в двух-, трех-, или четырехмерном пространстве (однородные координаты). Это реализуется с помощью нескольких вариантов команды glVertex*:

void glVertex[2 3 4][s i f d] (type coords)

void glVertex[2 3 4][s i f d]v (type *coords)

Каждая команда задает четыре координаты вершины: x, y, z, w. Команда glVertex2* получает значения x и y. Координата z в таком случае устанавливается по умолчанию равной 0, координата w – равной 1. Vertex3* получает координаты x, y, z и заносит в координату w значение 1. Vertex4* позволяет задать все четыре координаты.

Для ассоциации с вершинами цветов, нормалей и текстурных координат используются текущие значения соответствующих данных, что отвечает организации OpenGL как конечного автомата. Эти значения могут быть изменены в любой момент с помощью вызова соответствующих команд.

2.2.2.Цвет вершины

Для задания текущего цвета вершины используются команды :

void glColor[3 4][b s i f] (GLtype components)

void glColor[3 4][b s i f]v (GLtype components)

Первые три параметра задают R, G, B компоненты цвета, а последний параметр определяет коэффициент непрозрачности (так называемая альфа-компонента). Если в названии команды указан тип ‘f’ (float), то значения всех параметров должны принадлежать отрезку [0,1], при этом по умолчанию значение альфа-компоненты устанавливается равным 1.0, что соответствует полной непрозрачности. Тип ‘ub’ (unsigned byte) подразумевает, что значения должны лежать в отрезке [0,255].

Вершинам можно назначать различные цвета, и, если включен соответствующий режим, то будет проводиться линейная интерполяция цветов по поверхности примитива.

Для управления режимом интерполяции используется команда

void glShadeModel (GLenum mode)

вызов которой с параметром GL_SMOOTH включает интерполяцию (установка по умолчанию), а с GL_FLAT – отключает.

2.2.3.Нормаль

Определить нормаль в вершине можно, используя команды

void glNormal3[b s i f d] (type coords)

void glNormal3[b s i f d]v (type coords)

Для правильного расчета освещения необходимо, чтобы вектор нормали имел единичную длину. Командой glEnable(GL_NORMALIZE)можно включить специальный режим, при котором задаваемые нормали будут нормироваться автоматически.

Режим автоматической нормализации должен быть включен, если приложение использует модельные преобразования растяжения/сжатия, так как в этом случае длина нормалей изменяется при умножении на модельно-видовую матрицу.

Однако применение этого режима уменьшает скорость работы механизма визуализации OpenGL, так как нормализация векторов имеет заметную вычислительную сложность (взятие квадратного корня и т.п.). Поэтому лучше сразу задавать единичные нормали.

Отметим, что команды

void glEnable (GLenum mode)

void glDisable (GLenum mode)

производят включение и отключение того или иного режима работы конвейера OpenGL. Эти команды применяются достаточно часто, и их возможные параметры будут рассматриваться в каждом конкретном случае.



Скачать документ

Похожие документы:

  1. Содержание формы и методы медиаобразовании в ссср аннотированный библиографический указатель / сост шариков а в строганова т в м нии соиук апн ссср 1991 9 1 с

    Библиографический указатель
    1 ПРЕДИСЛОВИЕСодержание, формы и методы медиаобразовании в ... условиях школьного ки­ноклуба. Анализируются содержание, формы и методы кинематог­рафического ... развития учащихся, возможностей учителя. Оглавление ПРЕДИСЛОВИЕ 1 А 3 Б 5 В 10 Г 14 Д 17 Е ...
  2. Содержание книги Предисловие

    Документ
    Содержание книги Предисловие В чем преимущество форекса ... ОРИГИНАЛЬНОГО, на основе чего в предисловиях и аннотациях к книге пишется неимоверное ... начал анализировать имеющуюся литературу, в предисловиях к которым красочно расписывается какие действенные ...
  3. Предисловие 4 1 введение 6

    Исследование
    ... внешне проявляющихся феноменов; ♦ основным содержанием экспериментальной психологии является регистрация реакций ... онтогенеза. Тбилиси: Мецниереба, 1987. Батуев А. С. Предисловие редактора//Физиология поведения: Нейробиологические закономерности ...
  4. Предисловие составителя ни один обман в науке не вечен в истории он возможнее но история в сущности не наука там люди выворачивают каждый фактик как перчатку в зависимости от того какая сторона им

    Документ
    ... Следовательно, и сам content, т.е. содержание сообщения, привязанного к извлечённой из ... Проглас св. Евангелия" — нечто вроде предисловия к переводу Евангелия, помещенный в печском ... славословием, но по содержанию представляют значительное разнообразие. ...
  5. Содержание Биография 2 Вступительные статьи 4 I На пути в Крым 9 II Первая встреча с Крымом 16 III Столица Гиреев 27 IV Мертвый город 32 V Тени Малахова кургана 39 VI Горькое прошлое 48 VII Трахейские святыни 55 VIII Инкерман

    Биография
    ... Таврическое земство ассигновало средства на содержание младшего отделения приготовительного класса ... сведения, как это подчеркнуто в предисловии. Он даже не затруднился ... министерству, получающим штатное содержание из государственного казначейства, ...

Другие похожие документы..