Главная > Учебное пособие


268


Оглавление

Предисловие 4

1 Введение в системы реального времени 6

2 Автоматизированные системы управления технологическими процессами 28

3 Организация операционных систем реального времени 54

4 Стандарты на ОСРВ 80

5 Обзор ОСРВ 97

6 Микроядро ОС QNX Neutrino 158

7 Администратор процессов и управление ресурсами в ОС QNX 223

8 Контрольные работы 256

Глоссарий 265

Список литературы 267

Предисловие

В учебном пособии рассказывается о системах реального времени. Приводится определение систем реального времени и их классификация, рассматриваются основные параметры и механизмы, обеспечивающие требования реального времени. Сделан упор на обзор операционных систем реального времени.

Базовыми категориями в освоении данного курса являются понятия и концепции: построения систем реального времени, диспетчеризация потоков, установка уровней приоритетов, механизмы синхронизации и защиты от инверсии приоритетов.

Для изучения дисциплины «Системы реального времени» необходимо иметь навыки программирования на языке высокого уровня Си, освоить курсы «Операционные системы», «Архитектура и организация ЭВМ».

Учебное пособие по курсу «Системы реального времени» представлено в семи разделах.

Впервом разделе вводятся определения систем реального времени, области применения и вычислительные платформы систем реального времени. Также в разделе уделено внимание обзору архитектур операционных систем реального времени и рассмотрено типичное строение системы реального времени.

Второй раздел содержит описание развития автоматизированных систем управления технологическими процессами, назначения их отдельных компонент, а также в нем представлены функциональные возможности SCADA-систем, контроллеров и технологических языков программирования.

Третий раздел включает вопросы организации операционных систем реального времени, их функциональные требования и архитектуры построения.

Стандарты на создание операционных систем реального времени рассмотрены в четвертом разделе. Раздел содержит описание стандартов SCEPTRE, POSIX, DO-178B, ARINC-653, OSEK и стандарты безопасности.

Пятый раздел содержит классификацию операционных систем реального времени в зависимости от происхождения и обзор основных функциональных возможностей конкретных операционных систем реального времени

В шестом разделе приведено описание общего представление об ОС QNX, основные характеристики микроядра ОС QNX, описание связей между процессами, вопросы сетевого взаимодействия, механизм планирования процессов и первичной обработки прерываний.

В седьмом разделе рассматривается работа администратора процессов и управление ресурсами ОС QNX. Вводится понятие администраторов ресурсов, описываются следующие ресурсы — файловые системы, инсталляционные пакеты, символьные устройства ввода/вывода, сетевая подсистема QNX, графический интерфейс пользователя, печать.

1Введение в системы реального времени

1.1Определения систем реального времени

Понятия «реальное время», «операционные системы реального времени» известны всем, но толкуются они часто по-разному, и спектр этих толкований очень широк. Количество иллюзий и мифов в мире реального времени велико. Прежде чем перейти к их рассмотрению, необходимо дать понятие определению «параллельные системы».

Программные системы, которые по своему назначению должны обрабатывать одновременные события или управлять одновременно выполняемыми операциями, инициируемыми внешними по отношению к ним программами или пользователями, являются параллельными по своей природе [1].

К параллельным системам относятся:

  • Системы реального времени (СРВ) и встроенные системы (специального назначения).

  • Обычные и распределенные операционные системы (их компоненты распределены по нескольким компьютерам).

  • Системы управления базами данных и системы обработки транзакций.

  • Распределенные сервисы прикладного уровня.

Рассмотрим первый класс параллельных систем — системы реального времени.

Английский термин «real-time» и соответствующее ему в русском языке понятие «реальное время» является наиболее спорным и сложным термином. Данное понятие применяется в различных научно-технических областях и подразумевает некие действия, продолжительность которых определяется внешними процессами.

Специфическая особенность систем реального времени заключается в том, что к ним предъявляются строгие временные требования, диктуемые окружением или определяемые их назначением [1].

Вышеприведенное определение не является единственным для понимания смысла данного понятия, приведем еще несколько определений:

  • Система называется системой реального времени, если правильность ее функционирования зависит не только от логической корректности вычислений, но и от времени, за которое эти вычисления производятся. То есть для событий, происходящих в такой системе, то, КОГДА эти события происходят, так же важно, как логическая корректность самих событий [2].

  • Реальное время (программное обеспечение): Относится к системе или режиму работы, в котором вычисления проводятся в течение времени, определяемого внешним процессом, с целью управления или мониторинга внешнего процесса по результатам этих вычислений (IEEE 610.12-1990).

  • Системы реального времени — это системы, которые предсказуемо (в смысле времени реакции) реагируют на непредсказуемые (по времени появления) внешние события [3].

Одной из функций таких систем может быть выполнение определенных действий в ответ на сигналы тревоги, и очень важно, чтобы они отвечали на них с определенной скоростью. В связи с этим существует разделение систем реального времени на два типа:

  1. Системы с жесткими временными характеристиками — системы жесткого реального времени.

  2. Системы с нежесткими временными характеристиками — системы мягкого реального времени.

Системой жесткого реального времени называется система, где неспособность обеспечить реакцию на какие-либо события в заданное время является отказом и ведет к невозможности решения поставленной задачи. Многие теоретики ставят здесь точку, из чего следует, что время реакции в жестких системах может составлять и секунды, и часы, и недели. Однако большинство практиков считают, что время реакции в системах жесткого реального времени должно быть все-таки минимальным. Большинство систем жесткогореального времени являются системами контроля и управления. Такие СРВ сложны в реализации, так как для них предъявляются особые требования в вопросах безопасности.

Точного определения для мягкого реального времени не существует, поэтому отнесем сюда все СРВ, не попадающие в категорию жестких. Так как система мягкого реального времени может не успевать ВСЕ делать ВСЕГДА в заданное время, возникает проблема определения критериев успешности (нормальности) ее функционирования. Вопрос этот совсем не простой, так как в зависимости от функций системы это может быть максимальная задержка в выполнении каких-либо операций, средняя своевременность обработки событий и т.п. Более того, эти критерии влияют на то, какой алгоритм планирования задач является оптимальным.

Еще одной важной характеристикой системы реального времени является ее природа — статическая или динамическая [1]. В статической системе функционирование прогнозируемо и может быть определенно на этапе проектирования. В динамической системе запросы поступают нерегулярно и непредсказуемо, но система должна динамически отвечать на них с гарантированной скоростью.

Следует отметить, что понятие «функционировать в реальном времени» отнюдь не означает очень быстро — его суть заключается в том, что к системе предъявляются определенные временные требования и они должны соблюдаться [1].

Приведем требования, сформулированные Д. Бэконом и Т. Харрисом [1], к системе реального времени:

  • Необходима поддержка выполнения отдельных задач. Одни из них, такие, как сбор данных, могут быть периодическими, другие, в том числе реакция на сигналы тревоги, — непредсказуемыми.

  • Для каждой задачи могут существовать специфические требования, в частности точно определяющие время ее выполнения.

  • Отдельные выполняемые системой задачи могут быть частью одной общей задачи — в таком случае производимые в их рамках действия должны быть четко согласованными.

По типу применения системы реального времени можно разделить на специализированные и универсальные.

Специализированной СРВ называется система, где конкретные временные требования определены. Такая система должна быть специально спроектирована для удовлетворения этих требований. Обычно такие системы применяются там, где есть риск человеческого фактора.

Универсальная СРВ должна уметь выполнять произвольные (заранее не определенные) временные задачи без применения специальной техники. Разработка таких систем, безусловно, является самой сложной задачей, хотя обычно, требования, предъявляемые к таким системам, мягче, чем требования для специализированных систем.

1.2Области применения и вычислительные платформы СРВ

В течение длительного времени основными потребителями СРВ были военная и космическая области. Сейчас ситуация изменилась, и СРВ можно встретить даже в товарах народного потребления.

Основные области применения СРВ:

  • Военная и космическая области:

    • бортовое и встраиваемое оборудование;

    • радары, системы измерения и управления;

    • цифровые видеосистемы, симуляторы;

    • ракеты, системы определения местоположения и привязки к местности.

  • Промышленность:

    • автоматические системы управления производством; автоматические системы управления технологическими процессами;

    • автомобилестроение: симуляторы, системы управления мотором, автоматическое сцепление …

    • энергетика: сбор информации, управление данными и оборудованием …

    • телекоммуникации: коммуникационное оборудование, сетевые коммутаторы, телефонные станции …

    • банковское оборудование: банкоматы …

  • Товары широкого применения:

    • мобильные телефоны;

    • цифровое телевидение: мультимедиа, видеосервисы, цифровые телевизионные декодеры …

    • компьютерное и офисное оборудование.

Рассмотрим более подробно применение систем реального времени в наиболее интересных областях, которые приведены в работе Д. Бэкона и Т. Харриса [1]:

Управление технологическим процессом. В компьютерных системах управление технологическими процессами осуществляется путем сбора и анализа данных, получаемых с помощью специального контрольного оборудования (рис. 1.1).

Рис. 1.1 — Пример распределенной системы управления

технологическим процессом

Речь может идти как о простых действиях, таких, как измерение температуры и давления через заданные промежутки времени и сравнение полученных показателей с предельными значениями, так и о более сложных, например сбор большого количества разнообразных данных, их математический анализ и выдача команд управления технологическим процессом на исполнительные механизмы. Точность, с которой работает подобная система, зависит от объема собираемых данных и времени, затрачиваемого на их анализ. Сбор и анализ информации производится с известной периодичностью, зависящей от нужд контролируемого или управляемого процесса. Так, определение температуры в доменной печи требует выполнения замеров каждые несколько секунд, а уровень воды в водохранилище достаточно проверять один раз в час.

Системы должны не только периодически выполнять определенные действия, но и реагировать на события, возникающие в непредсказуемые моменты времени, например повышение температуры ядерного реактора или давления газа в угольной шахте.

Также может быть еще один вид непериодических действий системы — высокоуровневое регулирование параметров, осуществляемое по запросу управляющего персонала на основе общей картины процесса, например изменение количества выпускаемой продукции. Подобного рода действия не столь срочные, как реакция на сигнал тревоги, но являются неотъемлемой частью общего процесса функционирования системы.

Описанные системы реального времени относятся к категории статических и имеют жесткие временные характеристики. Обычно для них разрабатывают периодическую схему, предусматривающую возможность поступления сигнала тревоги один раз за указанный период.

Поддержка мультимедиа. Мультимедийные приложения используются в самых разнообразных областях человеческой деятельности. Особенностью мультимедийных приложений является общее требование: два потока данных (звук и видео) должны воспроизводиться синхронно и с необходимой скоростью.

Характерно, что запросы на воспроизведение данных мультимедиа поступают от пользователя в непредсказуемые моменты времени, возможно, параллельно с работой другого программного обеспечения. Нужно заметить, что видеоданные имеют очень большой объем, а следовательно, для их доставки необходима высокая пропускная способность соединений. Так, минутный видеоклип занимает 12 Мбайт памяти и должен передаваться со скоростью 200 Кбит/с. Доставка должна производиться равномерно — лишь при этом условии движение на экране будет выглядеть плавным и естественным, без рывков и резкой смены кадров. Таким образом, независимо от местоположения источника данных и загруженности системы, к последней предъявляются требования гарантированного качества обслуживания. Иными словами, она должна быть способна воспроизводить мультимедийные данные с нужной скоростью, синхронно и без существенных потерь.

Мультимедийные рабочие станции можно определить как системы реального времени с нежесткими временными характеристиками: они должны работать в реальном времени, но для них допустимы некоторые задержки и снижение качества.

От обычных систем с разделением времени мультимедийные системы отличаются более высокими показателями вычислительной мощи, ширины полосы пропускания сетевых соединений, объема постоянной и основной памяти, а также программным обеспечением, способным эффективно использовать все эти технические возможности.

Согласно определению СРВ должна обеспечить требуемый уровень сервиса в заданный промежуток времени. Этот промежуток времени задается обычно периодичностью и скоростью процессов, которым управляет система. Приблизительное время реакции в зависимости от области применения СРВпоказано в таблице 1.1.

Таблица 1.1 — Приблизительное время реакции в зависимости

от области применения СРВ

Область применения СРВ

Время реакции СРВ

Математическое

моделирование

несколько микросекунд

Радиолокация

несколько миллисекунд

Складской учет

несколько секунд

Управление производством

несколько минут

Видно, что времена очень разнятся и накладывают различные требования на вычислительную установку, на которой работает СРВ.

Часто СРВ существуют в нескольких вариантах, например в полном и сокращенном, когда объем системы составляет несколько килобайтов.

Вычислительные установки, на которых используются СРВ, можно разделить на следующие платформы:

«Обычные» компьютеры. По логическому устройству совпадают с настольными компьютерами. Аппаратное устройство несколько отличается. Для обеспечения минимального времени простоя в случае технической неполадки процессор, память и другие элементы размещаются на съемной плате, вставляемой в специальный разъем так называемой «пассивной» платы. В другие разъемы этой платы вставляются платы периферийных контролеров и другое оборудование. Сам компьютер помещается в специальный корпус, обеспечивающий защиту от пыли и механических повреждений. В качестве мониторов используются жидкокристаллические дисплеи иногда с сенсорочувствительным покрытием.

Основное доминирующее положение на этих компьютерах занимают процессоры Intel 80х86.

Подобные вычислительные системы обычно не используются для непосредственного управления промышленным или иным оборудованием. Они служат как терминалы для взаимодействия с промышленными компьютерами и встроенными контролерами, для визуализации состояния оборудования и технологического процесса.

На таких компьютерах, как правило, в качестве операционной системы (ОС) используют классические ОС (с разделением времени) с дополнительными программными комплексами, адаптирующими их к требованиям реального времени.

Промышленные компьютеры. Состоят из одной платы, на которой размещены процессор, контролер памяти и память различных видов (ОЗУ, ПЗУ, статическое ОЗУ, флэш-память).

Несмотря на наличие контроллеров SCSI (Small Computer System Interface), очень часто СРВ работает без дисковых накопителей. Это связано с тем, что дисковые накопители не отвечают требованиям, предъявляемым к системам реального времени, таким, как надежность, устойчивость к вибрациям, габаритам и времени готовности после включения питания.

Плата помещается в специальный корпус, в котором установлены разъемы шины и источник питания. Корпус обеспечивает специальный температурный режим, защиту от пыли и механических повреждений. В этот же корпус вставляются цифро-аналоговые и аналогово-цифровые преобразователи, через которые осуществляется ввод/вывод управляющей информации, управление электромоторами и т.п.

Среди промышленных процессоров доминируют процессоры семейств PowerPC (Motorola — IBM), Motorola 68xxx (Motorola). Также широкую нишу занимают процессоры семейства SPARC (SUN), Intel (Intel), ARM (ARM).

При выборе процессора определяющими факторами являются получение требуемой производительности при наименьшей тактовой частоте, а также время между переключением задач и реакции на прерывания.

Промышленные компьютеры используются для непосредственного управления промышленным или иным оборудованием. Они часто не имеют монитора и клавиатуры. Для взаимодействия с ними используются обычные компьютеры, соединенные с ними через порты или Ethernet.

Отметим основные особенности СРВ, диктуемые необходимостью работы на промышленном компьютере:

  • Система часто должна работать на бездисковом компьютере и осуществлять начальную загрузку из ПЗУ. В силу этого должны учитываться следующие факторы:

    • критически важным является размер системы;

    • для экономии места в ПЗУ часть системы хранится в сжатом виде и загружается в ОЗУ по мере необходимости;

    • система часто позволяет исполнять код как в ОЗУ, так и в ПЗУ;

    • при наличии свободного места в ОЗУ система часто копирует код из более медленного ПЗУ в ОЗУ;

    • сама система, как правило, создается на другом компьютере — «обычном» компьютере.

  • Система должна по возможности использовать как можно большее число типов процессоров, что дает возможность потребителю выбрать процессор необходимой мощности.

  • Система должна по возможности поддерживать более широкий ряд специального оборудования (периферийные контроллеры, таймеры и т.д.).

Критически важным параметром является возможность предсказания времени реакции на прерывания.

В целом ряде задач автоматизации программные комплексы должны работать как составная часть более крупных автоматических систем без непосредственного участия человека. В таких случаях СРВ называют встраиваемыми.

Встраиваемые системы (Embedded system) можно определить как программное и аппаратное обеспечение, составляющее компоненты другой, большей системы и работающее без вмешательства человека [3]. Встраиваемые системы устанавливаются внутрь оборудования, которым они управляют. Системы для крупного оборудования совпадают с промышленными компьютерами. Для меньшего — оборудования представляют собой процессор с сопутствующими элементами, размещенными на одной плате с другими электронными компонентами этого оборудования.



Скачать документ

Похожие документы:

  1. #организация производства и управление предприятием учебник

    Список учебников
    ... технологическихпроцессов, унифицированной и специальной оснастки и оборудования, применением станков с программным управлением, промышленных роботов и гибких автоматизированныхсистем ...
  2. #организация производства и управление предприятием учебник

    Список учебников
    ... технологическихпроцессов, унифицированной и специальной оснастки и оборудования, применением станков с программным управлением, промышленных роботов и гибких автоматизированныхсистем ...
  3. Автоматизированные информационно-поисковые системы

    Учебное пособие
    ... подробно все технологическиепроцессы, которым подвергается информация в автоматизированныхсистемах не целесообразно по ... позволяет системе работать в режиме реальноговремени с удаленными терминалами. Большинство отраслевых систем реализованы ...
  4. АНАЛИТИКА МЕТОДОЛОГИЯ ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ ИНФОРМАЦИОННО-АНАЛИТИЧЕСКОЙ РАБОТЫ ~ 2004 ~

    Документ
    ... субъектов управления является введение в использование организациями, осуществляющими ИАО, автоматизированных информационных систем комплексной поддержки ИАР. Системы комплексной ...
  5. Автоматизация технологических процессов и производств

    Учебно-методический комплекс
    ... системы автоматизации и управлениятехнологи­чески­мипроцессами, производствами и предприятиями 20 2 6 0 2 2 8 № 6 6.1 Основы построения интегрированных системуправления 8 1 4 3 6.2 Автоматизированныесистемыуправлениятехнологическимипроцессами ...

Другие похожие документы..