Главная > Контрольные вопросы


2.4. Модульное построение курса информатики

Накопленный опыт преподавания, анализ требова­ний образовательного стандарта и рекомендаций ЮНЕСКО показывают, что в курсе информатики можно выделить две основные составляющие - теоретическая информатика и информационные технологии. Причем информационные технологии постепенно выходят на первый план. Поэтому ещё в базисном учебном плане 1998 года рекомендова­лось теоретическую информатику включать в образова­тельную область «математика и информатика», а инфор­мационные технологии - в образовательную область «Тех­нология». Сейчас в основной и старшей школе от такого деления отказались, и только в начальной школе инфор­матику включают как отдельный модуль предмета «Тех­нология (Труд)».

Прогресс в области информационных технологий приводит к быстрому устареванию учебных программ и методических разработок, заставляет изменять содержа­ние курса, поэтому невозможно выстроить линейный курс информатики, жестко фиксирующий время начала изуче­ния (например, 1 или 5 класс) и содержание в каждом классе. Выход из этого противоречия можно найти в мо­дульном построении курса, что позволяет учесть быстро меняющееся содержание, дифференциацию учебных за­ведений по их профилю, оснащенности компьютерами и программным обеспечением, наличию квалифицирован­ных кадров.

Образовательные модули можно классифицировать на базовые, дополнительные и углубленные, что обеспе­чивает соответствие содержания курса информатики и ИКТ базисному учебному плану, с выделением в нём феде­рального, регионального и школьного компонентов.

Базовый модуль - он относится к федеральному компоненту и является обязательным для изучения, обес­печивающий минимальное содержание образования в со­ответствии с образовательным стандартом. Базовый мо­дуль часто еще называют базовым курсом информатики и ИКТ, который изучается в 7-9 классах. В тоже время в старшей школе обучение информатике может быть на ба­зовом уровне или на профильном уровне, содержание ко­торого также определяется стандартом.

Дополнительный модуль - он относится к регио­нальному компоненту и призван обеспечить изучение но­вых информационных технологий и аппаратных средств.

Углубленный модуль - он относится к школьному компоненту (компонент образовательного учреждения) и призван обеспечить получение углубленных знаний, в том числе необходимых для поступления в вуз.

Помимо такого деления на модули, среди методи­стов и учителей в ходу выделение в содержании курса та­ких модулей, которые соответствуют делению на основ­ные темы. Таким образом, названные выше модули в свою очередь делят для удобства на более мелкие модули. В этом случае примерами модулей могут быть: «Информа­ция и информационные процессы», «Информационные модели и системы», «Компьютер как универсальное сред­ство обработки информации» и т.п. В профильном обуче­нии модулей может быть достаточно много в соответствии с выбранным содержанием.

Значительное различие в оснащенности школ ком­пьютерной техникой, существенный её недостаток в ряде периферийных школ, делают практически невозможным выполнение в полном объеме требований стандарта. По­этому модульное построение курса позволяет учителям приспосабливать его содержание к конкретным условиям школы.

2.5. Место курса информатики в учебном плане школы. Базисный учебный план

Место информатики определяется учебным планом. В настоящее время школа имеет возможность отойти от той жесткой схемы, которая имела место с момента вве­дения курса ОИВТ в 1985 году, и частично корректировать спускаемый Минобразом учебный план за счёт региональ­ного и школьного компонента .

В 2004 году был принят новый базисный учебный план и федеральный компонент образовательного стан­дарта по информатике и ИКТ. Фрагменты базисного учеб­ного плана 2004 года в части математики, технологии и информатики приведены ниже в таблицах 2.1 и 2.2 (в пол­ном виде этот базисный план приведен в работе [2]). Со­гласно этому плану:

  1. Изменилось название предмета информатики на «Информатика и ИКТ». Под таким названием он прописы­вается сейчас в учебных планах и школьном аттестате зре­лости.

  2. В 3-4 классах этот предмет вводится как учебный модуль предмета «Технология». Включение такого модуля направлено на обеспечение всеобщей компьютерной гра­мотности учащихся. Однако в 1-2 классах информатику можно изучать за счёт часов «Технология» или за счёт компонента образовательного учреждения (для теорети­ческой части).

  1. В 5-7 классах информатику можно изучать за счёт регионального и школьного компонентов, что делает курс информатики непрерывным.

  2. В основной школе информатика изучается за счёт федерального компонента: 1 час в неделю в 8 классе и 2 часа - в 9 классе. В 9 классе информатику можно изучать дополнительно ещё 1 час как предпрофильное обучение за счёт одного часа предмета «Технология», передаваемо­го в компонент образовательного учреждения.

  3. В старшей школе вводится профильное обучение, и информатика может быть представлена в выбранных про­филях на одном из двух уровней - базовом или профиль­ном. Базовый уровень ориентирован на формирование общей культуры в области информатики. Профильный уровень выбирается исходя из потребностей учащихся, и ориентирован на подготовку к последующей профессио­нальной деятельности или к профессиональному образо­ванию.

  4. Число часов на информатику в различных классах может быть расширено за счёт регионального компонента. В старшей школе увеличить число часов можно за счёт школьного компонента путем введения обязательных кур­сов по выбору (так называемых элективных курсов).

  5. Универсальное (непрофильное) обучение в стар­шей школе включает предмет «Информатика и ИКТ» как базовый общеобразовательный предмет и изучается на базовом уровне в 10 и 11 классах по 1 часу в неделю.

  6. Для различных профилей в старшей школе воз­можно увеличение часов до 6 в неделю за счёт региональ­ного компонента и элективных курсов.

В старшей школе предусмотрено профильное обуче­ние, причем число предлагаемых профилей составляет бо­лее десяти. В качестве примера приведем число недель­ных часов на изучение информатики на 2 года обучения для некоторых профилей:

Физико-математический - 8 часов, как профильный учебный предмет.

Социально-экономический - 2 часа, как базовый учебный предмет.

Таблица 2.1

Базисный учебный план 2004 года для начальной и основной школы (фрагмент)

Количество часов, в год/в неделю

.0 (и

1 кл

2 кл

3 кл

4 кл

Всего

5 кл

6 кл

7 кл

8 кл

9 кл

Всего

Математи ка

132 /4

13

6

/4

136 /4

136 /4

540

175 /5

175 /5

175 /5

175 /5

175 /5

875

Технологи я(Труд)

33 /1

34 /1

68 /2

68 /2

203

70 /2

70 /2

70 /2

35 /1

0

245

Информат ика и ИКТ

0

0

0

35 /1

70 /2

105

Информационно-технологический - 8 часов, как профиль­ный учебный предмет.

Индустриально-технологический - 2 часа, как базовый учебный предмет.

Универсальное (непрофильное обучение) - 2 часа, как ба­зовый учебный предмет.


Для остальных профилей не предусмотрено изучение информатики за счёт часов федерального компонента, а возможно только в рамках регионального или школьного компонента.

Контрольные вопросы и задания

  1. Какие главные факторы влияют на отбор содержания курса информатики?

  2. Опишите машинный и безмашинный варианты курса ОИВТ 1985 и 1986 гг.

  3. Каково назначение образовательного стандарта?

  4. Проанализируйте содержание образовательного стан­дарта по информатике и ИКТ для основной школы и вы­пишите требования к умениям школьников.

  5. Проанализируйте содержание образовательного стан­дарта по информатике и ИКТ для старшей школы на базо­вом уровне и выпишите требования к умениям учащихся.

  6. Почему принято модульное построение современного курса информатики?

  7. Что обеспечивает изучение базового модуля курса ин­форматики?

  8. Что обеспечивает изучение дополнительного модуля (регионального компонента) курса информатики?

  1. Что обеспечивает изучение углубленного модуля (школьного компонента) курса информатики?

  2. Проанализируйте базисный учебный план школы и вы­пишите число недельных часов на изучение информатики в каждом классе.

Глава 3. Методы и организационные формы обучения информатике в школе

3.1. Методы обучения информатике

При обучении информатике применяются, в основ­ном, такие же методы обучения, как и для других школь­ных предметов, имея, однако, свою специфику. Напом­ним, вкратце, основные понятия о методах обучения и их классификацию.

Метод обучения - это способ организации совмест­ной деятельности учителя и учащихся по достижению це­лей обучения.

Методический приём (синонимы: педагогический приём, дидактический приём) - это составная часть мето­да обучения, его элемент, отдельный шаг в реализации метода обучения. Каждый метод обучения реализуется через сочетание определенных дидактических приёмов. Многообразие методических приёмов не позволяет их классифицировать, однако можно выделить приёмы, ко­торые достаточно часто используются в работе учителя информатики. Например:

  • показ (наглядного объекта в натуре, на плакате или экране компьютера, практического действия, умст­венного действия и т.п.);

  • постановка вопроса;

  • выдача задания;

  • инструктаж.

Методы обучения реализуются в различных формах и с помощью различных средств обучения. Каждый из ме­тодов успешно решает лишь какие-то одни определенные задачи обучения, а другие - менее успешно. Универсаль­ных методов не существует, поэтому на уроке должны применяться разнообразные методы и их сочетание.

В структуре метода обучения выделяют целевую со­ставляющую, деятельную составляющую и средства обу­чения. Методы обучения выполняют важные функции процесса обучения: мотивационную, организующую, обу­чающую, развивающую и воспитывающую. Эти функции взаимосвязаны и взаимно проникают друг в друга.

Выбор метода обучения определяется следующими факторами:

  • дидактическими целями;

  • содержанием обучения;

  • уровнем развития учащихся и сформированности учебных навыков;

  • опытом и уровнем подготовки учителя.

Классификацию методов обучения проводят по раз­личным основаниям: по характеру познавательной дея­тельности; по дидактическим целям; кибернетический подход по Ю.К. Бабанскому.

По характеру познавательной деятельности методы обучения делятся на: объяснительно-иллюстративные; ре-продук-тивные; проблемный; эвристический; исследова­тельский.

По дидактическим целям методы обучения делятся на методы: приобретения новых знаний; формирования умений, навыков и применения знаний на практике; кон­троля и оценки знаний, умений и навыков.

Классификация методов обучения, предложенная академиком Ю.К. Бабанским, основана на кибернетиче­ском подходе к процессу обучения и включает три группы методов: методы организации и осуществления учебно­познавательной деятельности; методы стимулирования и мотивации учебно-познава-тельной деятельности; методы контроля и самоконтроля эффективности учебно-познавательной деятельности. Каждая из этих групп состо­ит из подгрупп, в которые входят методы обучения по иным классификациям. Классификация по Ю.К. Бабанско-му рассматривает в единстве методы организации учеб­ной деятельности, стимуляции и контроля. Такой подход позволяет целостно учитывать все взаимосвязанные ком­поненты деятельности учителя и учащихся.

Приведем краткую характеристику основных мето­дов обучения.

Объяснительно-иллюстративные или информа­ционно-рецептивные методы обучения, состоят в пере­даче учебной информации в «готовом» виде и восприятии (рецепции) её учениками. Учитель не только передает ин­формацию, но и организует её восприятие.

Репродуктивные методы отличаются от объясни­тельно-иллюстративных наличием объяснения знаний, за­поминания их учениками и последующим воспроизведе­нием (репродукцией) их. Прочность усвоения достигается многократным повторением. Эти методы важны при вы­работке навыков владения клавиатурой и мышью, а также при обучении программированию.

При эвристическом методе организуется поиск но­вых знаний. Часть знаний сообщает учитель, а часть учени­ки добывают сами в процессе решения познавательных задач. Это метод ещё называют частично-поисковым.

Исследовательский метод обучения состоит в том, что учитель формулирует задачу, иногда в общем виде, а учащиеся самостоятельно добывают необходимые знания в ходе её решения. При этом они овладевают методами научного познания и опытом исследовательской деятель­ности .

Рассказ - это последовательное изложение учебного материала описательного характера. Обычно учитель рас­сказывает историю создания ЭВМ и персональных компь­ютеров, и т.п.

Объяснение - это изложение материала с использо-ва-нием доказательств, анализа, пояснения, повтора. Этот метод применяют при изучении сложного теоретического материала, используя средства наглядности. Например, учитель объясняет устройство компьютера, работу процес­сора, организацию памяти.

Беседа - это метод обучения в форме вопросов и от­ветов. Беседы бывают: вводные, заключительные, инди­видуальные, групповые, катехизические (с целью прове­рить усвоение учебного материала) и эвристические (по­исковые). Например, метод беседы используется при изу­чении такого важного понятия, как информаци . Однако, применение этого метода требует больших затрат време­ни и высокого уровня педмастерства учителя.

Лекция - устное изложение учебного материала в логической последовательности. Обычно применяется лишь в старших классах и редко.

Наглядные методы обеспечивают всестороннее, образное, чувственное восприятие учебного материала.

Практические методы формируют практические умения и навыки, имеют высокую эффективность. К ним относятся: упражнения, лабораторные и практические ра­боты, выполнение проектов.

Дидактическая игра - это вид учебной деятельно­сти, моделирующий изучаемый объект, явление, процесс. Её цель - стимулирование познавательного интереса и ак­тивности. Ушинский писал: «... игра для ребенка это сама жизнь, сама действительность, которую ребенок сам кон­струирует». Игра готовит ребенка к труду и учению. Разви­вающие игры создают игровую ситуацию для развития творческой стороны интеллекта и широко применяются в обучении, как младших, так и старших школьников.

Проблемное обучение является очень эффективным методом для развития мышления школьников. Однако во­круг понимания его сути нагромождено много нелепостей, непонимания, искажений. Поэтому остановимся на нём подробно [4].

Метод проблемного обучения стал широко исполь­зоваться с 1960 годов после выхода монографии В. Оконя «Основы проблемного обучения», хотя исторически он восходит к «сократовским беседам». К.Д. Ушинский при­давал этому методу обучения большое значение. Но, не­смотря на достаточно длительную историю, среди методи­стов, а тем более среди учителей широко распространены заблуждения и искажения его сущности. Причина, на наш взгляд, отчасти лежит в названии метода, которое крайне неудачно. В переводе с греческого слово «проблема» зву­чит как задача, но тогда искажается смысл - что означает «задачное обучение»? Это что, обучение решению задач или обучение путем решения задач? Смысла мало. Но ко­гда используют термин «проблемное обучение», то на этом можно спекулировать, ведь у всех есть проблемы, есть они и в науке, и в обучении, тогда можно говорить, что учителя применяют современные методы обучения. При этом часто забывается, что в основе проблемы всегда лежит противоречие. Проблема возникает лишь тогда, ко­гда есть противоречие. Именно наличие противоречия создает проблему - будь то в жизни или в науке. Если про­тиворечие не возникает, то тогда это не проблема, а про­сто задача.

Если мы на учебных занятиях будем показывать, соз­давать противоречия, то мы и будем применять метод проблемного обучения. Не избегать противоречий, не ухо­дить от них, а наоборот, выявлять, показывать, вычленять и использовать для обучения. Часто можно видеть, как учитель легко и просто, без сучка и задоринки объясняет учебный материал, так у него все гладко получается - го­товые знания просто «вливаются» в головы учеников. А, между тем, добывались эти знания в науке тернистым пу­тем проб и ошибок, через постановку и разрешение про­тиворечий, проблем (иногда на это уходили годы и деся­тилетия). Если мы хотим, в соответствии с принципом на­учности, методы обучения приблизить к методам науки, то надо учащимся показывать, каким путем знания были по­лучены, моделировать тем самым научную деятельность, поэтому должны использовать проблемное обучение.

Таким образом, сутью проблемного обучения явля­ется создание и разрешение на занятиях проблемных (противоречивых) ситуаций, в основе которых лежит диа­лектическое противоречие. Разрешение противоречий и является путем познания, не только научного, но и учебно­го. Структуру проблемного обучения можно представить схемой, как показано на рис. 3.1.



Скачать документ

Похожие документы:

  1. Предисловие - 9 - раздел 1 общие вопросы методики преподавания информатики и икт в школе - 11 -

    Учебники и учебные пособия
    Предисловие - 9 - Раздел 1. Общиевопросыметодикипреподаванияинформатики и ИКТ в школе - 11 - Глава 1. Предмет информатики в школе -11 - Информатика как наука и как учебный предмет - 11 - История введения предмета информатика в отечественной ...
  2. ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В ВУЗЕ

    Научно-методический журнал
    ... , знаний приобретённых в школе, вопрос открытый. Возвращаясь к информатике, позволим себе отметить ... математики и информатики, заключается в теоретической базе учебных курсов «Методикапреподавания математики», «Методикапреподаванияинформатики», « ...
  3. Отчет профессионального образования за 2008 год

    Отчет
    ... вопросы ... 11 ... Раздел № ... информатики и ИКТ (Босова Л.Л., г. Коломна, УМЦ РУО 22 января 2008 г.). Проблемы преподаванияинформатики и ИКТ в школе ... Методикапреподавания математики в средней школе. Общаяметодика ... 56. Предисловие // Научные школы Московского ...
  4. Инструктивно-методическое письмо «о преподавании учебного предмета (4)

    Инструктивно-методическое письмо
    ... ИКТ Использование ИКТ ... актуальными вопросамиметодикипреподавания русского ... преподаванияинформатики в учреждениях общего ... предисловие «От авторов», рубрика «Интересно знать», разделы ... , Н. Путешествие в древнегреческую школу. – № 11, 2009. Варганаў, В. ...
  5. Основная образовательная программа начального общего образования мбоу новинской сош на 2012 – 2015 уч г

    Основная образовательная программа
    ... методикапреподавания иностранного языка в начальной школе», 2011, 108 ч. «Теория и методикапреподавания иностранного языка в начальной школе ... 11 кл.: Бином, 2011. Программа курса «Информатика и ИКТ» для 2 – 4 кл. начальной общеобразовательной школы. ...

Другие похожие документы..