Главная > Документ


2. Малое поступление/отсутствие поступления кальция и магния

Кальций и магний очень важны для человека. Кальций – важная составляющая костей и зубов. Он является регулятором нервно-мышечной возбудимости, участвует в работе проводящей системы сердца, сокращении сердца и мышц, передаче информации внутри клетки. Кальций – элемент, ответственный за свертываемость крови. Магний является кофактором и активатором более чем 300 ферментативных реакций, включая гликолиз, синтез АТФ, транспорт минералов, таких как натрий, калий и кальций через мембраны, синтез белков и нуклеиновых кислот, нервно-мышечная возбудимость и мышечные сокращения.

Если оценить процентный вклад питьевой воды в общее потребление кальция и магния, станет понятно, что вода не является основным их источником. Тем не менее, значение этого источника минералов трудно переоценить. Даже в развитых странах продукты питания не могут компенсировать дефицит кальция и, особенно, магния, если питьевая вода бедна этими элементами.

Эпидемиологические исследования, проводившиеся в разных странах в течение последних 50 лет, показали, что существует связь между возросшим количеством сердечно-сосудистых заболеваний с последующим летальным исходом и потреблением мягкой воды. При сравнении мягкой воды с жесткой и богатой магнием, закономерность прослеживается очень четко. Обзор исследований сопровождается недавно опубликованными статьями (12-15), итоги подведены в других главах этой монографии (Кальдерон и Краун, Монарка). Последние исследования показали, что потребление мягкой воды, например, бедной кальцием, может привести к повышенному риску переломов у детей (16), нейродегенеративным изменениям (17), преждевременным родам и сниженному весу новорожденных детей (18) и некоторым видам рака (19,20). Кроме возрастания риска внезапной смертности (21-23), с употреблением воды, бедной магнием, связаны случаи нарушения работы сердечной мышцы (24), поздний токсикоз беременных (т.н. преэклампсия) (25), и некоторые виды рака (26-29).

Специфические сведения об изменениях в метаболизме кальция у людей, вынужденных употреблять обессоленную воду (к примеру, дистиллированную, профильтрованную через известняк) с низким содержанием кальция и минерализацией, были получены в советском городе Шевченко (3, 30, 31). У местного населения наблюдались пониженные активность щелочной фосфатазы и концентрации кальция и фосфора в плазме и выраженная декальцификация костной ткани. Ярче всего изменения были выражены у женщин (особенно беременных) и зависели от длительности проживания в городе Шевченко. Важность достаточного содержания кальция в воде установлена в вышеописанном эксперименте с крысами, получавшими полноценное питание, насыщенное питательными веществами и солями и обессоленную воду, искусственно обогащенную минеральными веществами (400 мг/л) и кальцием (5 мг/л, 25 мг/л, 50 мг/л)

(3, 32). У животных, которые пили воду, содержавшую 5 мг/л кальция, было отмечено снижение функций щитовидной железы и ряда других функций организма по сравнению с животными, которым доза кальция была удвоена.

Иногда последствия недостаточного поступления в организм некоторых веществ видны лишь спустя долгие годы, но сердечно-сосудистая система, испытывающая нехватку кальция и магния, реагирует гораздо быстрее. Несколько месяцев употребления воды, бедной кальцием и/или магнием – достаточный срок (33). Показательный пример – население Чехии и Словакии в 2000-2002 годы, когда в системе централизованного водоснабжения стали использовать метод обратного осмоса.

В течение нескольких недель или месяцев было отмечено много претензий, связанных с острой нехваткой магния (и возможно кальция) (34).

Жалобы населения касались сердечно-сосудистых заболеваний, усталости, слабости, мышечных судорог и фактически совпадали с симптомами, перечисленными в сообщении Немецкого Общества Питания (7).

3. Малое поступление других макро- и микроэлементов

Несмотря на то, что питьевая вода, за редким исключением, не является значительным источником важных элементов, вклад ее по некоторым причинам очень важен. Современные технологии приготовления продуктов питания не позволяют большинству людей получать достаточное количество минералов и микроэлементов. В случае острого дефицита какого-либо элемента, даже относительно малое количество его в воде может сыграть значительную защитную роль. Вещества в воде растворены и находятся в виде ионов, что позволяет им значительно легче адсорбироваться в организме человека, чем из продуктов питания, где они связаны в различные соединения.

Опыты на животных также показали важность присутствия в воде микроколичеств некоторых веществ. Например, Кондратюк (35) в отчете показал, что разница в получении микроэлементов приводила к шестикратному различию их концентраций в мышечной ткани животных. Эксперимент проводился в течение 6 месяцев; крысы были поделены на 4 группы и употребляли разную воду: а) водопроводная; б) слабоминерализованная; в) слабоминерализованная, обогащенная йодом, кобальтом, медью, марганцем, молибденом, цинком и фтором в обычных концентрациях; г) слабоминерализованная, обогащенная теми же элементами, но в 10-кратно больших количествах. Кроме того, было обнаружено, что необогащенная деминерализованная вода отрицательно влияет на процессы кроветворения. У животных, получавших необогащенную микроэлементами воду со слабой минерализацией, число красных кровяных клеток было на 19 % ниже, чем у особей, получавших обычную водопроводную воду. Разница в содержании гемоглобина была еще больше при сравнении с животными, получавшими обогащенную воду.

Последние исследования экологической ситуации в России показали, что население, потребляющее воду с малым содержанием минеральных веществ подвержено риску многих заболеваний. Это гипертензия (высокое артериальное давление) и изменения в коронарных сосудах, язва желудка и двенадцатиперстной кишки, хронический гастрит, зоб, осложнения у беременных, новорожденных и грудных детей, такие как желтуха, анемия, переломы и проблемы роста (36). Тем не менее, не до конца ясно, связаны ли все эти заболевания именно с нехваткой кальция, магния и других важных элементов или с иными факторами.

Лютай (37) провел многочисленные исследования в Усть-Илимской регионе России.

Объектом исследований стали 7658 взрослых людей, 562 ребенка и 1582 беременных женщин и их новорожденных детей; изучались заболеваемость и физическое развитие. Все эти люди делятся на 2 группы: они проживают в 2-х районах, где вода имеет разную минерализацию. В первом из выбранных районов вода характеризуется более низкой минерализацией 134 мг/л, содержание кальция и магния – 18,7 и 4,9 соответственно, гидрокарбонат иона – 86,4 мг/л. Во втором районе – более высокоминерализованная вода 385 мг/л, содержание кальция и магния – 29,5 и 8,3 соответственно, гидрокарбонат иона – 243,7 мг/л. В образцах воды из двух районов было также определено содержание сульфатов, хлоридов, натрия, калия, меди, цинка, марганца и молибдена. Культура питания, качество воздуха, социальные условия и время проживания в данном регионе у жителей двух районов были одинаковыми. Жители района с более низкой минерализацией воды чаще страдали от зоба, гипертензии, ишемической болезни сердца, язвы желудка и двенадцатиперстной кишки, хронического гастрита, холецистита и нефрита. Дети медленнее развивались и страдали некоторыми отклонениями в росте, беременные женщины – отеками и анемией, новорожденные чаще болели.

Более низкий уровень заболеваемости был отмечен там, где содержание кальция в воде составляло 30-90 мг/л, магния – 17-35 мг/л, а общая минерализация – около 400 мг/л (для воды содержащей гидрокарбонаты). Автор пришел к выводу, что такая вода близка к физиологической норме для человека.

4. Потери кальция, магния и других макроэлементов в процессе приготовления пищи

Стало известно, что в процессе приготовления пищи на мягкой воде из продуктов (овощи, мясо, злаки) теряются важные элементы. Потери кальция и магния могут достигать 60 %, других микроэлементов – даже больше (медь-66 %, марганец-70 %, кобальт-86 %). Напротив, во время приготовления пищи на жесткой воде, потери минералов заметно ниже, а содержание кальция в готовом блюде может даже повыситься (38-41).

Хотя большинство питательных веществ поступает с продуктами питания, приготовление пищи на слабоминерализованной воде может заметно снизить общее поступление некоторых элементов. Причем эта нехватка гораздо серьезнее, чем при использовании такой воды только в питьевых целях. Современная диета большинства людей не в состоянии удовлетворить потребностей организма во всех необходимых веществах и, следовательно, любой фактор, способствующий потере минеральных веществ в процессе кулинарной обработки, может сыграть негативную роль.

5.Возможный рост поступления в организм токсичных металлов

Возросший риск поступления токсичных металлов может быть следствием двух причин: 1) более интенсивное выделение металлов из материалов, контактирующих с водой, приводящее к повышенной концентрации металлов в питьевой воде; 2) низкие защитные (антитоксические) свойства воды, бедной кальцием и магнием.

Вода с малой минерализацией нестабильна и как следствие проявляет высокую агрессивность по отношению к материалам, с которыми вступает в контакт. Эта вода легче растворяет металлы и некоторые органические компоненты труб, накопительных танков и емкостей, шлангов и фитингов, не будучи при этом способной образовывать комплексные соединения с токсичными металлами, снижая этим их негативное влияние.

В 1993-1994 гг. в США было зарегистрировано 8 вспышек химических отравлений питьевой водой, среди них – 3 случая отравления грудных детей свинцом. Анализ крови этих детей показал содержание свинца 15 мкг/100 мл, 37 мкг/100 мл и 42 мкг/100 мл при том, что 10 мкг/100 мл – уже небезопасный уровень. Во всех трех случаях свинец попал в воду из медных труб и спаянных свинцом швов накопительных танков. Во всех трех системах водоснабжения использовалась вода с малой минерализацией, что привело к более активному выделению токсичных материалов (42). Первые полученные пробы воды из водопроводных кранов показали содержание свинца 495 и 1050 мкг/л свинца; соответственно у детей, которые пили эту воду, в крови было обнаружено самое высокое содержание свинца. В семье ребенка, который получил меньшую дозу, концентрация свинца в водопроводной воде составляла 66 мкг/л (43).

Кальций и, в меньшей степени, магний в воде и продуктах питания являются защитными факторами, которые нивелируют воздействие токсичных элементов. Они могут предотвратить абсорбцию некоторых токсичных элементов (свинец, кадмий) из кишечника в кровь как путем прямой реакции связывания токсинов в нерастворимые комплексы, так и за счет конкуренции при всасывании (44-50). Невзирая на то, что этот эффект ограничен, его нужно всегда учитывать. Население, употребляющее воду, бедную минеральными веществами, всегда больше подвержено риску воздействия токсичных веществ, чем то, которое пьет воду средней жесткости и минерализации.

6. Возможное бактериальное загрязнение воды с малой минерализацией

В целом вода склонна к бактериальному загрязнению при отсутствии следовых количеств дезинфектанта как в самом источнике, так и вследствие повторного микробного роста в распределительной системе уже после обработки. Повторный рост может также начаться в деминерализованной воде.

Бактериальному росту в распределительной системе может способствовать изначально высокая температура воды, повышение температуры по причине жаркого климата, отсутствие дезинфектанта и, возможно, бóльшая доступность некоторых питательных веществ (агрессивная по своей природе вода легко разъедает материалы, из которых сделаны трубы).

Несмотря на то, что неповрежденная мембрана очистки воды должна в идеале удалять все бактерии, но она может и не быть абсолютно эффективной (из-за течей). Свидетельство – вспышка брюшного тифа в Саудовской Аравии в 1992 г. вызванная водой прошедшей обработку в системе обратного осмоса (51). В наше время фактически вся вода перед попаданием к потребителю проходит дезинфекцию. Повторный рост непатогенных микроорганизмов в воде обработанной с помощью различных домашних систем очистки описан в работах групп Гельдрейха (52), Пэймента (53, 54) и многих других. Чешский Национальный институт Общественного Здоровья в Праге (34) протестировал ряд изделий, предназначенных для контакта с питьевой водой и обнаружил, что емкости под давлением для обратного осмоса предрасположены к повторному росту бактерий: внутри танка находится резиновая груша, которая является благоприятной для бактерий средой.

III. Оптимальный минеральный состав деминерализованной питьевой воды

Коррозионные свойства и потенциальная опасность деминерализованной воды для здоровья, распространение и употребление воды с малой минерализацией привело к созданию рекомендаций по минимальным и оптимальным концентрациям минералов в питьевой воде. Дополнительно в некоторых странах разработаны обязательные нормы, включенные в соответствующую законодательную или техническую документацию по качеству питьевой воды. Органолептические свойства и способность воды утолять жажду были также учтены в рекомендациях. Например, исследования, в которых принимали участие добровольцы, показали, что оптимальной можно считать температуру воды от 15 до 35 °С. Вода с температурой ниже 15 °С или выше 35 °С употреблялась испытуемыми в меньших объемах. Вода с содержанием растворенных солей 25-50 мг/л была признана безвкусной (3).

1. Отчет ВОЗ 1980 года

Употребление питьевой воды с низкой минерализацией способствует вымыванию солей из организма. Изменения водно-солевого баланса в организме были отмечены не только при употреблении деминерализованной воды, но и воды с минерализацией от 50 до 75 мг/л. Поэтому группа исследователей ВОЗ, которая подготовила отчет за 1980 г. (3), рекомендует употреблять в питьевых целях воду с минерализацией не менее 100 мг/л. Также учеными сделан вывод: оптимальная минерализация составляет 200-400 мг/л для хлоридно-сульфатных вод и 250-500 мг/л для гидрокарбонатных вод (1980 г., ВОЗ). Рекомендации основаны на экспериментальных данных, участие в которых принимали крысы, собаки и люди-добровольцы. Были отобраны пробы: из водопроводной сети г. Москвы, деминерализованной воды с минерализацией около 10 мг/л и образцов, подготовленных в лаборатории (минерализация 50, 100, 250, 300, 500, 750, 1000 и 1500 мг/л) с использованием следующих ионов: Cl- (40 %), HCO3 - (32 %), SO4 2- (28 %), Na+ (50 %), Ca2+ (38 %), Mg2+ (12 %).

Были изучены многие показатели: динамика массы тела, основной метаболизм и метаболизм азота, ферментная активность, вводно-солевой обмен и его регуляторная функция, содержание минеральных веществ в тканях и жидкостях организма, гематокритное число и активность антидиуретического гормона. При оптимальном содержании минеральных солей негативные изменения не были отмечены ни у крыс, ни у собак, ни у людей, такая вода, имеет высокие органолептические показатели, хорошо удаляет жажду, ее коррозионная активность невысока.

Кроме выводов об оптимальной минерализации воды отчет (3) дополнен рекомендациями по содержанию кальция (не менее 30 мг/л). Этому есть объяснение: при меньших концентрациях кальция изменяется обмен кальция и фосфора в организме и наблюдается пониженное содержание минералов в костной ткани. Также, когда концентрация кальция в воде достигает 30 мг/л, ее коррозионная активность снижается и вода становится более стабильной (3). В отчете (3) также есть указания по концентрации гидрокарбонат-иона в 30 мг/л для достижения приемлемых органолептических характеристик, снижения коррозионной активности и достижения равновесия с ионом кальция.

2. Современные рекомендации

Современные исследования дали дополнительную информацию о минимальном и оптимальном уровнях содержания минералов, которые должны присутствовать в деминерализованной воде. Например, влияние воды с различной жесткостью на состояние здоровья женщин в возрасте от 20 до 49 лет было предметом 2-х серий эпидемиологических исследований (460 и 511 женщин) в 4 городах Южной Сибири (55,56). Вода в городе А содержит самое малое количество кальция и магния (3,0 мг/л кальция и 2,4 мг/л магния). Вода в городе Б насыщена солями немного больше (18,0 мг/л кальция и 5,0 мг/л магния). Самая высокая насыщенность воды солями наблюдалась в городах В (22,0 мг/л кальция и 11,3 мг/л магния) и Г (45,0 мг/л кальция и 26,2 мг/л магния). У жительниц городов А и Б по сравнению с женщинами из В и Г чаще наблюдались изменения сердечно-сосудистой системы (по результатам ЭКГ), высокое артериальное давление, соматические дисфункции, головная боль и головокружение, остеопороз (рентгеновская абсорбциометрия).

Эти результаты подтверждают предположение о том, что содержание магния в питьевой воде должно составлять не менее 10 мг/л, кальция – 20 мг/л, а не 30 мг/л, как указано в отчете ВОЗ за 1980 г.

Основываясь на доступных данных, исследователи рекомендовали следующие концентрации кальция, магния и величину жесткости питьевой воды:

- для магния: минимум 10 мг/л (33,56), оптимальное содержание 20-30 мг/л (49, 57);

- для кальция: минимум 20 мг/л (56), оптимальное содержание около 50 (40-80) мг/л (57, 58);

- общая жесткость воды, суммарное содержание солей кальция и магния 2-4 ммоль/л (37, 50, 59, 60).

При соответствии состава питьевой воды этим рекомендациям негативных изменений в состоянии здоровья не наблюдалось или почти не наблюдалось. Максимальное защитное действие или позитивное влияние отмечено у питьевой воды с предположительно оптимальными концентрациями минеральных веществ. Наблюдения за состоянием сердечно-сосудистой системы позволили определить оптимальные уровни содержания магния в питьевой воде, изменения в метаболизме кальция и процессах окостенения стали основой для рекомендаций по содержанию кальция.

Верхний предел оптимального интервала жесткости был определен исходя из того, что при употреблении воды жесткостью свыше 5 ммоль/л возникает риск образования камней в желчном пузыре, почках, мочевом пузыре, а также артрозов и артропатии у населения.

В работе над определением оптимальных концентраций прогнозы строились на долговременном употреблении воды. При кратковременном употреблении воды для разработки терапевтических рекомендаций необходимо рассматривать более высокие концентрации.

IV. Руководства и директивы по кальцию, магнию и жесткости питьевой воды

Во втором издании Руководства по качеству питьевой воды (61) ВОЗ оценивает кальций и магний с точки зрения жесткости воды, но не дает отдельных рекомендаций по минимальному или максимальному содержанию кальция, магния, величине жесткости. Первая Европейская Директива (62) установила требования к минимальной жесткости для умягченной и обессоленной воды (не менее 60 мг/л кальция или эквивалентного катиона). Это требование стало обязательным в соответствии с национальным законодательством всех стран-членов ЕС, однако в декабре 2003 г. истек срок действия данной директивы, и она была заменена на новую (63). Новая Директива не включает требований к содержанию кальция, магния и величине жесткости.

С другой стороны, ничто не препятствует введению таких требований в национальное законодательство стран-членов. Только некоторые страны, вступившие в ЕС (например, Нидерланды) установили требования к содержанию кальция, магния и жесткости воды на уровне обязательных государственных норм.

Некоторые члены ЕС (Австрия, Германия) включили эти показатели в техническую документацию в качестве необязательных норм (методики снижения коррозионной активности воды). Все четыре европейские страны, вошедшие в ЕС в мае 2004 г., включили эти требования в соответствующие нормативные документы, однако строгость этих требований различна:

- Чехия (2004): для умягченной воды: не менее 30 мг/л кальция и не менее 1- мг/л магния; требования Руководства: 40-80 мг/л кальция и 20-30 мг/л магния (жесткость как

Σ Ca + Mg = 2,0-3,5 ммоль/л);

- Венгрия (2001): жесткость 50-350 мг/л (по CaO); минимальная требуемая концентрация для бутилированной воды, новых источников воды, умягченной и обессоленной воды 50 мг/л;

- Польша (2000): жесткость 60-500 (по CaCO3);

- Словакия (2002): требования по кальцию совпадают с указанными в Руководстве

> 30 мг/л, по магнию 10-30 мг/л.

Российский стандарт по среде обитания в пилотируемых космических кораблях – общие медицинские и технические требования (64) - определяет требования к соотношению минералов в питьевой воде, прошедшей повторную обработку. Среди прочих требований указывается минерализация в пределах от 100 до 1000 мг/л; минимальные уровни фтора, кальция и магния устанавливаются специальной комиссией каждого космофлота отдельно. Акцент сделан на проблеме обогащения повторно используемой воды концентратом минеральных веществ для придания ей физиологической ценности (65).

V. Выводы

Питьевая вода должна содержать хотя бы минимальные количества важнейших минералов (и некоторых других компонентов, например, карбонатов). К сожалению, в последние два десятилетия исследователи почти не уделяли внимания благоприятному влиянию воды и ее защитным свойствам, так как были поглощены проблемой токсичных веществ-загрязнителей. Тем не менее, были предприняты попытки определения минимального содержания важных минеральных веществ или минерализации питьевой воды, а некоторые страны включили в свое законодательство требования Руководства по отдельным компонентам.

Данный вопрос актуален не только для деминерализованной питьевой воды, которая не была обогащена комплексом минеральных веществ, но и для воды, в которой содержание минеральных веществ снижено вследствие домашней или централизованной обработки, а также для слабоминерализованной бутилированной воды.

Питьевая вода, полученная с помощью деминерализации, обогащается минеральными веществами, однако это не касается воды, обработанной в домашних условиях. Даже после стабилизации минерального состава вода может не оказывать благоприятного воздействия на здоровье. Обычно воду обогащают минеральными веществами, пропуская через известняк или другие карбонат-содержащие минералы. Вода при этом насыщается в основном кальцием, а дефицит магния и других микроэлементов, например, фтора и калия ничем не восполняется. Кроме того, количество вносимого кальция регулируется скорее техническими (снижение агрессивности воды), нежели гигиеническими соображениями. Возможно, ни один из способов искусственного обогащения воды минеральными веществами не является оптимальным, поскольку насыщения всеми важными минеральными веществами не происходит. Как правило, методики стабилизации минерального состава воды разрабатываются с целью снижения коррозионной активности деминерализованной воды.

Необогащенная деминерализованная вода или вода с низким содержанием минеральных веществ – в свете нехватки или отсутствия в ней важных минеральных веществ – далеко не идеальный продукт, следовательно, ее регулярное потребление не дает адекватного вклада в общее потребление некоторых значимых нутриентов. В этой главе обосновано данное утверждение. Подтверждение экспериментальных данных и открытий, полученных на людях-добровольцах при исследовании сильно деминерализованной воды можно найти в более ранних документах, не всегда соответствующих современным методологическим требованиям. Однако не стоит пренебрегать данными этих исследований: некоторые из них уникальны. Ранние исследования, как опыты на животных, так и клинические наблюдения влияния деминерализованной воды на здоровье, дали сопоставимые результаты. Это подтверждается современными исследованиями.

Собрано достаточно данных для того, чтобы подтвердить: дефицит кальция и магния в воде не проходит без последствий. Есть доказательства, что более высокое содержание магния в воде приводит к снижению риска сердечно-сосудистых заболеваний и внезапной смерти. Эта связь была описана во многих работах независимо друг от друга. При этом исследования были построены различным образом и касались различных регионов, населения и периодов времени. Последовательные результаты были получены при вскрытии, клинических наблюдениях и опытах с животными.

Биологическое правдоподобие защитного действия магния не вызывает сомнений, однако специфичность менее очевидна из-за разнообразной этиологии сердечно-сосудистых заболеваний. Кроме повышенного риска смерти от сердечно-сосудистых заболеваний, низкое содержание магния в воде связано с возможными заболеваниями двигательных нервов, осложнениями беременности (т.н. преэклампсия), внезапная смерть маленьких детей и некоторые виды рака. Современные исследователи предлагают версию, что употребление мягкой воды с низким содержанием кальция может приводить к переломам у детей, нейродегенеративным изменениям, преждевременным родам, низкой массе тела новорожденных и некоторым видам рака. Нельзя исключать роль водного кальция в развитии сердечно-сосудистых заболеваний.

Международные и национальные организации, ответственные за качество питьевой воды, должны рассматривать руководство по обработке деминерализованной воды, обязательно определяя минимальные значения важных показателей, включая кальций, магний и минерализацию. При необходимости полномочные организации обязаны поддерживать и продвигать целевые исследования в этой области для улучшения состояния здоровья населения. Если руководство по качеству разрабатывается по отдельным веществам, обязательным в деминерализованной воде, полномочные организации должны быть уверены, что документ применим для потребителей домашних систем очистки воды и бутилированной воды.



Скачать документ

Похожие документы:

  1. Проблемы здоровья и экологии (5)

    Документ
    А. Амброзайтис (Вильнюс), А. Ю. Барышников (Москва), Бенджамин Бонна (США), А. Е. Доросевич (Смоленск), М. П. Захарченко (Санкт-Петербург), С. С. Козлов (Санкт-Петербург), Э.
  2. «алоэ вера – безмолвный природный целитель» аласдэйр баркрофт и аудун мискья

    Документ
    АЛАСДЭЙР БАРКРОФТ родился в Малайе в семье главы сельского хозяйства, а многие его родственники со стороны матери работали в каучуковой промышленности.
  3. Цены указаны по состоянию на 01 09 2012г

    Анализ
    Во втором издании справочника, полностью посвященного анализу воды, рассматриваются все типы вод: пресная вода из рек, озер, каналов, морская вода, а также грунтовые воды из родников, сточных систем и ручьев.
  4. Токсикология хрома и его соединений

    Монография
    В монографии систематизированы научные сведения о механизмах токсического действия хрома и его соединений. Представлена информация о физико-химических свойствах, путях поступления, транспорта и распределении этих химических веществ в живом организме.
  5. ФИРМА « » - «Документация И Литература» КНИГА-ПОЧТОЙ ДЛЯ ИНЖЕНЕРОВ И ТЕХНОЛОГОВ

    Книга
    Составьте заявку в свободной форме с обязательным указанием названия Вашей организации, точным почтовым адресом, названием документации и количеством экз.
  6. ФИРМА « » - «Документация И Литература» КНИГА-ПОЧТОЙ ДЛЯ ИНЖЕНЕРОВ И ТЕХНОЛОГОВ (3)

    Книга
    Составьте заявку в свободной форме с обязательным указанием названия Вашей организации, точным почтовым адресом, названием документации и количеством экз.

Другие похожие документы..