Главная > Тесты


2.5 . Порошковый метод Дебая – Шеррера.

Для исследования структуры поликристаллов используют монохроматическое излучение длины волны . Съемку производят на пленку, расположенную на внутренней поверхности цилиндрической камеры, в центре которой установлен образец. В качестве исследуемых образцов используют или цилиндрические столбики спрессованных порошков, или кусочки проволоки. На рис. 2.5.1 и 2.5.2 приведены примеры рентгенограмм, полученных методом Дебая – Шеррера.

Происхождение и характер дебаеграмм можно понять с помощью обратной решетки и сфе­ры Эвальда. Поликристаллы представляют собой скопле­ния беспорядочно ориенти­рованных мелких кристал­ликов. Поэтому в обратном пространстве поликристалл можно представить в виде набора концентрических сфер, радиусы которых равны обратным значениям межплоскостных расстояний 1/dhkl (рис. 2.5.3). На такую связку обратных векторов с центром в начальной точке А направим монохрома­тический пучок рентгеновских лу­чей. Из точки А в направлении, об­ратном So, отложим величину до точки О. Из последней как из центра проведем сферу радиусом Если теперь во все точки пере­сечения сферы Эвальда с концентрическими сферами (точки А, В, С, О, А', В', С', О', рис. 2.4.2 провести радиуcы то только для этих направлений, выполняется условие дифракционного максимума.

При съемке в цилиндрической камере конусы отраженных лучей пересекаются с цилиндром, в результате дифракционные линии располагаются симметричными дужками, как показано на рис.2.5.2.




Глава 3. Межатомное взаимодействие. Основные типы связей в твердых телах

3.1. Классификация твердых тел. Типы связей

До сих пор мы рассматривали твердое тело как систему, состоящую из дискретных частиц (атомов, ионов, молекул), образующих идеальную трехмерную периодическую структуру, и главное внимание уделяли закономерностям строения и симметрии кристаллических решеток. При этом мы ничего не говорили о силах, которые удерживают частицы вместе около положения их равновесия. Силы, удерживающие частицы в кристалле, имеют ту же природу, что и межатомные силы, которые обусловли­вают образование сложных молекул. Этими силами, как сейчас точно установлено, являются, в основном, силы электростатического притяжения между противоположно заряженными частицами (электронами и ядрами) и силы отталкивания между одноименно заряженными частицами (электронами и электронами, ядрами и ядрами).

Оценки потенциалов взаимодействия между частицами в кри­сталле показывают, что магнитные силы здесь весьма малы, а гравитационными силами вообще можно пренебречь. Таким образом, характер сил межатомного взаимодействия в первую очередь определяется строением электронных оболочек взаимодействующих атомов.

Характер межатомных сил иногда кладут в основу класси­фикации твердых тел. Согласно этой классификации все твердые тела разделяют на четыре типа: металлические, ковалентные, ионные и молекулярные кристаллы.

Кристаллы неорганических веществ с водородной связью (ко­торая по своему характеру является, в основном, ионной) часто выделяют в отдельный тип. Водородная связь обусловлена элект­ростатическим притяжением между атомом водорода и каким-либо сильно электроотрицательным атомом (О, Р, N, Сl и др.). Классическим примером таких веществ является вода в жидком или твердом состоянии. Из-за недостатка места мы не будем бо­лее подробно останавливаться на этом типе связи и отошлем чи­тателя к более фундаментальным трудам по физике твердого тела.

Заметим, что не существует однозначного способа классифи­кации твердых тел. Так, все твердые тела можно классифициро­вать по свойствам симметрии их кристаллических структур, по электрическим свойствам. В соответствии с последней класси­фикацией твердые тела, как это будет показано в гл. 4, делятся на проводники и изоляторы. Типичными проводниками электриче­ства являются металлы (Аg, Си, Аu и др.), а изоляторами — ионные кристаллы.

Между металлами и изоляторами располага­ются полуметаллы (Вi, Sb) и полупроводники (Si, Ge,). Полу­проводники при низких температурах ведут себя как изоляторы. Полуметаллы, подобно металлу, проводят ток, хотя концентрация электронов проводимости в них примерно в 104 раз меньше, чем в металлах. Такое различие обусловлено особенностями элект­ронной структуры.

В настоящей главе примем классификацию твердых тел, основанную на характере межатомных сил взаимодействия, ко­торый, как говорилось выше, определяется строением электрон­ных оболочек взаимодействующих атомов.

Как правило, в меж­атомных связях у большинства элементов принимают участие все внешние валентные электроны. У Сu, Аg, Аu, Еu, Vb, Аm вследствие сравнительно небольшой энергии связи электронов заполненных d10-, f7- и f14- оболочек в межатомных связях мо­гут дополнительно участвовать один-два электрона этих оболо­чек. Существует ряд элементов, имеющих большое число валент­ных электронов во внешней оболочке, но из-за их высоких энер­гий связи с атомом не все валентные электроны могут участво­вать в межатомных связях (О, F, Fe, Со, Ni и др.).

Число валентных электронов, способных участвовать в меж­атомных связях, периодически изменяется с возрастанием атом­ного номера z, что является следствием периодического закона Менделеева, в соответствии с которым все физико-химические свойства должны изменяться периодически с ростом атомного номера.

При взаимодействии атомов одного сорта с атомами другого сорта характер химической связи определяется их способностью захватывать или отдавать валентный электрон. Эта способность характеризуется, так называемой электроотрицательностью атомов - X.

По существу, электроотрицательность — это параметр, вы­ражающий тенденцию атома притягивать к себе электроны в конкретном твердом теле. Электроотрицательность — относительная мера взаимодействия атомов, она не является строго физической величиной, поскольку она не постоянна и зависит от природы другого атома, с которым химически связан данный атом.

Один и тот же атом в химической связи иногда одновре­менно может выступать и как электроположительный, и как электроотрицательный. Электроотрицательность очень слабо за­висит от типа связи и от конкретных особенностей кристалли­ческой структуры, что делает ее некоторым объективным пара­метром атомов, который полезен при обсуждении свойств твер­дых тел.

Таким об­разом, в левой части таблицы Менделеева располагаются элементы с наибо­лее сильно выраженными металлическими свойствами (металлы), а в правой — элементы с наиболее сильно выраженными неме­таллическими свойствами (металлоиды).

Разделение химически активных элементов на металлы и ме­таллоиды позволяет ввести три основных типа связи: металли­ческая, ковалентная и ионная. Связь между сильно электрополо­жительными металлами и электроотрицательными неметаллами трактуется как ионная связь. Так как она осуществляется меж­ду противоположно заряженными ионами, то ее называют—по полярности ионов — гетерополярной. К гомополярным относят металлическую и ковалентную связи. Металлическая связь реа­лизуется между металлами и металлами, а ковалентная — меж­ду неметаллами и неметаллами или металлоидами. Названные типы связей являются предельными случаями химического взаи­модействия. В реальной ситуации ковалентные связи в чистом виде редко реализуются и имеют в какой-то мере частично ионный характер. Соединений, близких к идеально ионным, также чрезвычайно мало.

3.2. Энергия связи

Проблема связи атомов в твердых телах из-за одинаковой природы сил взаимодействия между атомами аналогична проблеме сил связи атомов в молекулах. Силы связи в молекулах и твердых телах имеют много общего. Ответ о силах связи в твердых телах представляет собой обобщение ответа, полученного для молекул. Поэтому для количественной оценки энергии связи атомов в твердых телах сначала рассмотрим силы, которые удерживают атомы вместе в двухатомной молекуле.

Допустим, что имеются два атома А и В. Если атомы находятся далеко друг от друга, то они ведут себя как свободные. Энергия такой системы, состоящей из двух изолированных атомов, равна сумме энергий этих атомов, которую произвольно можно принять за нуль. Атомы не взаимодействуют друг с дру­гом до тех пор, пока расстояние

r между ними велико по сравнению с (rA+rB), rA и rBрадиусы атомов А и В. Если при уменьшении расстояния между атомами энергия системы понижается по сравнению с суммарной энергией изолированных ато­мов, то между атомами возникает сила притяжения, чему соответствует уменьшение потенциальной энергии системы U(r).

При некотором расстоянии r=r0 энергия U (r) достигает минимального значения, которое соответствует силе:

(3.1)

Этот минимум обязательно существует; в противном случае вообще не смогла бы образоваться молекула с конечным расстоянием между ядрами.

При дальнейшем сближении атомов между ними начинают действовать силы отталкивания, быстро возрастающие с уменьшением r, что сопровождается также возрастанием потенциальной энергии U(r).

Смена притяжения отталкиванием может быть приближенно описана путем представления полной потенциальной энергии вза­имодействия в виде суммы двух членов, из которых один (отри­цательный) соответствует энергии сил притяжения, а другой (по­ложительный) — энергии сил отталкивания:

(3.2)


На рис. 3.1 схематически изображены кривые этих потенциалов и суммарная кривая, соответствующая полной потенциальной энергии взаимодействия. При r=r0, соот­ветствующем минимуму энергии си­стемы, силы притяжения уравновешиваются силами отталкивания (Fпр—Fот=0), при этом образуется молекула AB с наиболее стабильной конфигурацией, в которой ядра атомов совершают колебания с соб­ственной частотой.

Глубина минимума U0 равна энергии связи атомов в молекуле. Энергия связи, или энергия сцепления, равна разности потенциальной энергии системы в начальном (1) и конечном (2) состояниях.

За начальное состояние системы обычно принимают такое состояние, когда частицы (атомы, молекула, ионы) находятся друг от друга на достаточно больших расстояниях и не взаимо­действуют между собой, так что можно положить U1=0.

Конечное состояние отвечает равновесному расположению час­тиц системы при Т=0 К. Исходя из сказанного, энергию связи можно представить в виде

U0= - U2

Для оценки энергии связи, как это видно из формулы (3.2), необходимо знать хотя бы в общем виде зависимости потенциалов притяжения Uпр и отталкивания Uот от расстояния r между взаимодействующими атомами. Конкретный вид этих зависимостей определяется природой взаимодействующих атомов.

Легко видеть, что потенциал сил притяжения, исходя из их электростатического характера, можно представить степенной функцией

, (3.3)

где a и mположительные константы

При т=1 потенциал (3.3) соответствует обычному кулоновскому взаимодействию между противоположно заряженными ионами, а при m = 6, как мы увидим ниже, — потенциалу притяжения при взаимодействии между атомами инертных газов.

Для потенциала сил отталкивания, который обусловлен прежде всего отталкиванием ядер взаимодействующих атомов и зависит от экранировки ядер окружающими их электронами, Борн и Ланде, исходя из классических представлений-, получили выра­жение

(3.4)

где b, n >0 постоянные. При выводе формулы для потенциала сил отталкивания Борном и Ланде была выбрана статическая модель атома, в которой электроны в 8-электронной оболочке размещены по вершинам ку­ба. Ясно, что при взаимодействии таких атомов потенциал сил отталкивания должен зависеть от их взаимной ориентации, однако этого никогда не наблюдается в эксперименте.

При выводе формул для энергии связи мы будем пользоваться для потенциала сил отталкивания выражением (3.4), поскольку его использование значительно упрощает расчеты.

Теперь запишем выражение для полной потенциальной энер­гии взаимодействия двух атомов в виде

(3.5)

Для того чтобы функция U в выражении (3.5) имела минимум, необходимо, чтобы показатель степени потенциала отталкивания был больше показателя степени потенциала притяжения, т. е. что­бы выполнялось условие: n>т.

Зависимость энергии связи в кристаллах от межатомного рас­стояния r, так же как и в молекулах, определяется двумя глав­ными членами: 1) притяжением атомов, обусловленным взаимо­действием валентных электронов, и 2) кулоновским отталкивани­ем внутренних электронных оболочек атомных остовов и отталкиванием ядер. Для устойчивого равновесного состояния обязательно на­личие минимума энергии на суммарной кривой энергий притяже­ния и отталкивания, который соответствует определенной ста­бильной конфигурации в расположении атомов кристаллической решетки.

Энергия связи (или энергия сцепления) кристалла представ­ляет собой энергию, которая необходима для разделения тела на составные части. В зависимости от типа твердого тела составны­ми частями могут быть молекулы и атомы в молекулярных кри­сталлах, атомы в ковалентных и металлических кристаллах, положительно и отрицательно заряженные ионы в ионных кристал­лах.

При расчете энергии сцепления молекулярных и ионных кри­сталлов в силу того, что конфигурация электронов в этих кри­сталлах не слишком сильно отличается от их конфигурации в изолированных атомах или ионах, обычно ограничиваются вычи­слением классической потенциальной энергии системы сферически симметричных частиц, образующих определенную кристаллическую структуру. Считается, что силы, действующие между атомами или ионами, являются центральными, т. е. полная потенциальная энергия системы зависит только лишь от расстояния между вза­имодействующими частицами, которые локализованы в узлах ре­шетки и кинетическая энергия которых пренебрежимо мала.

Оказывается, что даже при таких довольно-таки грубых при­ближениях теоретические оценки энергии связи приводят к до­статочно хорошему согласию с экспериментом.

3.3. Молекулярные кристаллы

К молекулярным кристаллам относят твердые тела, в узлах кристаллической решетки которых располагаются либо одинако­вые молекулы с насыщенными связями (H2, Сl2, Вг2, I2), либо атомы инертных газов (Аг, Ne, Кг, Хе, Rn). К группе инертных газов следовало бы также отнести и гелий. Однако силы взаимо­действия между атомами гелия настолько слабы (энергия сцепления без учета нулевых колебаний составляет всего лишь 0,75-10-3 эВ), а квантово-механическая энергия атомов по срав­нению с этими силами настолько велика, что эта энергия явля­ется преобладающей. Это обстоятельство приводит к тому, что при нормальном давлении гелий остается жидким вплоть до 0К. Для того чтобы перевести гелий в твердое состояние, требуется давление 2,5. 106 Па,

Одной из характерных особенностей молекулярных кристаллов является то, что частицы (атомы, молекулы) в кристалле удер­живаются вместе очень слабыми силами Ван-дер-Ваальса. Энер­гия, сцепления молекулярных кристаллов очень мала и составля­ет 0,02—0,15 эВ (сравните с энергией сцепления ионных кристаллов: так для NaCl энергия сцепления порядка 8 эВ). Такие небольшие энергии сцепления обусловливают очень низкие темпе­ратуры плавления этих кристаллов.

Наличие сил Ван-дер-Ваальса отражает тот факт, что нейт­ральный изотропный атом (нейтральная молекула) может поля­ризоваться под влиянием электрического поля, причем даже два нейтральных изотропных атома индуцируют друг в друге малые дипольные электрические моменты. Происхождение сил Ван-дер-Ваальса можно объяснить исходя из следующих простых сообра­жений, В атомах инертных газов внешние электроны образуют очень прочные устойчивые группировки из восьми электронов в состояниях s2р6, вследствие чего на движение электронов слабо влияет присутствие соседних атомов. В среднем распределение заряда в изолированном атоме имеет сферическую симметрию (рис.3.2), положительный заряд ядра равен отрицательному за­ряду всех электронов, окружающих ядро, атом является электри­чески нейтральным, и центры зарядов лежат в центре ядра.

Если два таких атома находятся относительно далеко друг от друга, то они не взаимодействуют между собой (рис 3.2). При сближении атомов подвижный отрицательный заряд (облако) одного из атомов в какой-то момент времени может оказаться смещенным, так что центры положительных и отрицательных зарядов уже не будут совпадать, в результате возникнет мгновенный дипольный электрический момент. Такое разделение зарядов (флуктуация) может возникать из-за увеличения энергии атома, например, в результате столкновения с другой частицей. Таким образом, в каждый отдельный момент времени атом может обладать отличным от нуля дипольным электрическим моментом, хотя в среднем по времени этот момент равен нулю.

Мгновенный дипольный момент атома создает в центре дру­гого атома электрическое поле, которое наводит в нем также мгно­венный дипольный момент, т. е. и в этом атоме происходит раз­деление зарядов. Таким образом, по мере приближения двух атомов друг к другу их стабильная конфигурация становится экви­валентной двум электрическим диполям (рис 3.3).



Так как притяжение более близких друг к другу противопо­ложных зарядов (рис.3.2) увеличивается при сближении силь­нее, чем отталкивание более далеких одноименных зарядов, то результатом будет притяжение атомов друг к другу.

Квантово-механический расчет этих сил притяжения для си­стемы из двух идентичных гармонических осцилляторов, находя­щихся на расстоянии т один от другого, был выполнен Г. Лондо­ном (1930). Было получено, что полная энергия двух взаимодей­ствующих осцилляторе уменьшается из-за взаимодействия на ве­личину, обратно пропорциональную шестой степени расстояния между ними:

, (3.6)

где — собственная частота простого гармонического осцилля­тора; — постоянная Планка;поляризуемость осциллятора (атома); Р — дипольный момент; Е—напряженность электрического поля; а — постоянная.

Поляризуемость, как известно, определяет также оптические свойства кристаллов, в частности дисперсию света (изменение скорости света и показателя преломления среды в за­висимости от частоты), поэтому молекулярные силы иногда называют дисперсионными.

Молекулярные силы действуют не только между атомами инертных газов, но и между любыми другими атомами, когда они находятся достаточно близко друг к другу, т. е. так, что движение электронов в соседних атомах не претерпевает радикального изменения, а только испытывает слабое возмущение.

При дальнейшем уменьшении расстояния между атомами электронные оболочки начинают перекрываться и между атомами возникают значительные силы отталкивания. Отталкивание в слу­чае инертных газов, главным образом, появляется в результате действия принципа запрета Паули. При перекрывании электронных оболочек электроны первого атома стремятся частично занять состояния второго. Поскольку атомы инертных газов имеют стабильные электронные оболочки, в которых все энергетические состояния уже заняты, то при перекрытии оболочек электроны должны переходить в свободные квантовые состояния с более высокой энергией, так как, согласно принципу Паули, электроны не могут занимать одну и ту же область пространства без увеличения их кинетической энергии. Увеличение кинетической энергии приводит к увеличению полной энергии системы двух взаимодействующих атомов, а значит, и к появлению сил отталкивания.

Для того чтобы суммарный потенциал типа (3.5) имел минимум, необходимо, чтобы на малых расстояниях потенциал сил отталкивания был больше потенциала сил притяжения. Принято потенциал сил отталкивания представлять в форме степенного закона: Uот = Ь/rn, где показатель n равен 12, хотя такой показа­тель не имеет столь надежного обоснования, как показа­тель 6 в потенциале сил притяжения, однако выражение Uот= Ь/r12 представляет простое и хорошее приближение.

Теперь полную потенциальную энергию взаимодействия между двумя атомами, находящимися на расстоянии rij друг от дру­га, можно записать в виде

(3.7)

где а и Ь — положительные постоянные.

Обычно вместо (3.7) для описания взаимодействия электри­чески нейтральных атомов и электрически нейтральных и неполярных молекул используют потенциал Леннарда Джонса:

(3.8)

Потенциал (3.8) зависит от двух параметров: и Параметр соответствует межатомному расстоянию, при котором полная потенциальная энергия равна нулю, а параметр имеет размерность энергии и равен минимуму потенциаль­ной энергии при . Расстояние равно радиусу сферы непроницаемости взаимодействующих атомов, а r0 характеризует радиус действия межатомных сил. Параметры и получают из экспериментальных измерений в газовой фазе термодинамических величин: вириальных коэффициентов, коэффициентов вязкости и коэффициентов Джоуля — Томсона в уравнения состояния газа.



Скачать документ

Похожие документы:

  1. Физика твердого тела основы зонной теории твердых тел

    Документ
    ФИЗИКА ТВЕРДОГО ТЕЛА Основы зонной теории твердых тел. Стационарные состояния и энергетический спектр электронов в ...
  2. Физика твердого тела

    Программа
    ... 010700.68 Физика 010703 – Физика конденсированного состояния Физика твердого тела Основные сведения о твердых телах. Кристаллические и аморфные тела, твердые тела в науке ...
  3. Физика твердого тела (2)

    Программа
    ... Сибирское отделение Российской академии наук ФИЗИКА ТВЕРДОГО ТЕЛА ПРОГРАММА XII РОССИЙСКОЙ НАУЧНОЙ ... свойства твердых тел, взаимодействие излучения с веществом Низкоразмерные структуры и сверхрешетки Компьютерное моделирование в физике твердого тела ...
  4. Цели курса – познакомить студентов-физиков как с базовыми понятиями и методами физики твердого тела

    Примерная программа
    ... «Введение в физику твердого тела» имеет своей целью: дать набор необходимых сведений в области физики твердого тела и научить ... квантовой механики и статистической физики в качестве основ физики твердого тела Уметь: применять эти принципы ...
  5. Примерная программа дисциплины ФИЗИКА ТВЕРДОГО ТЕЛА Рекомендуется Минобразованием России для специальности 200100 Микроэлектроника и твердотельная электроника направления подготовки дипломированных специалистов 654100 ЭЛЕКТРОНИКА И МИКРОЭЛЕКТРОНИКА

    Примерная программа
    ... Дж. Физика твердого тела. – М.: Мир, 1988. Ашкрофт Н., Мермин Н. Физика твердого тела (т. 1, 2). – М.: Мир, 1979. Киттель Ч. Введение в физику твердого тела. – М.: Наука ...

Другие похожие документы..