textarchive.ru

Главная > Лабораторная работа


Лабораторная работа №1.

Тема: Перевод из одной системы счисления в другую.

Цель: научиться переводить числа из одной системы счисления в другую.

Методические указания.

Под системой счисления понимается способ представления любого числа с помощью некоторого алфавита символов, называемых цифрами.

Все системы счисления делятся на позиционные и непозиционные.

Непозиционными системами являются такие системы счисления, в которых каждый символ сохраняет свое значение независимо от места его положения в числе. Примером непозиционной системы счисления является римская система. К недостаткам таких систем относятся наличие большого количества знаков и сложность выполнения арифметических операций.

Система счисления называется позиционной, если одна и та же цифра имеет различное значение, определяющееся позицией цифры в последовательности цифр, изображающей число. Это значение меняется в однозначной зависимости от позиции, занимаемой цифрой, по некоторому закону. Примером позиционной системы счисления является десятичная система, используемая в повседневной жизни.

Количество p различных цифр, употребляемых в позиционной системе определяет название системы счисления и называется основанием системы счисления "p".

В десятичной системе используются десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; эта система имеет основанием число десять.

Задание 1. Запишите развернутую и краткую формы записи любого числа.

В ЭВМ применяют позиционные системы счисления с недесятичным основанием: двоичную, восьмеричную, шестнадцатеричную. В аппаратной основе ЭВМ лежат двухпозиционные элементы, которые могут находиться только в двух состояниях; одно из них обозначается 0, а другое 1. Поэтому основной системой счисления применяемой в ЭВМ является двоичная система.

Двоичная система счисления. Используется две цифры: 0 и 1.

Восьмеричная система счисления. Используется восемь цифр: 0, 1, 2, 3, 4, 5, 6, 7.

Употребляется в ЭВМ как вспомогательная для записи информации в сокращенном виде. Для представления одной цифры восьмеричной системы используется три двоичных разряда (триада) (Таблица 1).

Шестнадцатеричная система счисления. Для изображения чисел употребляются 16 цифр. Первые десять цифр этой системы обозначаются цифрами от 0 до 9, а старшие шесть цифр латинскими

буквами: 10=A,

11=B,

12=C,

13=D,

14=E,

15=F.

Шестнадцатеричная система используется для записи информации в сокращенном виде. Для представления одной цифры шестнадцатеричной системы счисления используется четыре двоичных разряда (тетрада) (Таблица 1).

Таблица 1. Наиболее важные системы счисления.

Перевод чисел из одной системы счисления в другую.

Перевод чисел в десятичную систему осуществляется путем составления

степенного ряда с основанием той системы, из которой число переводится. Затем

подсчитывается значение суммы.

Задание 2.

Перевести 10101101.101 из «2» в «16», «8» и «10» с.с.

При одновременном использовании нескольких различных систем счисленияоснование системы, к которой относится число, указывается в виде нижнегоиндекса.

Задание 3. Переведите самостоятельно.

а) Перевести 703.048 из «10» в «2», затем в «8» и наконец, в «16»

б) Перевести B2E.416 из «16» в «10», затем в «8».

Перевод целых десятичных чисел в недесятичную систему счисления осуществляется последовательным делением десятичного числа на основание той системы, в которую оно переводится, до тех пор, пока не получится частное меньшее этого основания. Число в новой системе записывается в виде остатков деления, начиная с последнего.

Задание 4.

а) Перевести 18110 из «10» в «2».

б) Перевести 62210 из «8» в «2», затем в «10».

Перевод правильных дробей из десятичной системы счисления в недесятичную.

Для перевода правильной десятичной дроби в другую систему эту дробь надо последовательно умножать на основание той системы, в которую она переводится. При этом умножаются только дробные части. Дробь в новой системе записывается в виде целых частей произведений, начиная с первого.

Задание 5. Перевести 0.312510

Замечание. Конечной десятичной дроби в другой системе счисления может соответствовать бесконечная (иногда периодическая) дробь. В этом случае количество знаков в представлении дроби в новой системе берется в зависимости от требуемой точности.

Задание 6. Перевести 0.6510 из «10» в «2» с.с. Точность 6 знаков.

Для перевода неправильной десятичной дроби в систему счисления с недесятичным основанием необходимо отдельно перевести целую часть и отдельно дробную.

Задание 7.

Перевести 23.12510 из «10» в «2» с.с.

Необходимо отметить, что целые числа остаются целыми, а правильные дроби дробями в любой системе счисления. Для перевода восьмеричного или шестнадцатеричного числа в двоичную форму достаточно заменить каждую цифру этого числа соответствующим трехразрядным двоичным числом (триадой) (Таб. 1) или четырехразрядным двоичным числом (тетрадой) (Таб. 1), при этом отбрасывают ненужные нули в старших и младших разрядах.

Задание 8.

а)Перевести 305.47 из «8» в «10» с.с.

б)Перевести 7B2.E16 из «16» в «10».

Для перехода от двоичной к восьмеричной (шестнадцатеричной) системе поступают следующим образом: двигаясь от точки влево и вправо, разбивают двоичное число на группы по три (четыре) разряда, дополняя при необходимости нулями крайние левую и правую группы. Затем триаду (тетраду) заменяют соответствующей восьмеричной (шестнадцатеричной) цифрой.

Задание 9.

а) Перевести 1101111001.1101 из «2» в «8» с.с.

б) Перевести 11111111011.100111 из «2» в «16» с.с.

Перевод из восьмеричной в шестнадцатеричную систему и обратно осуществляется через двоичную систему с помощью триад и тетрад.

Задание 10.

Перевести 175.248 "16" с.с.

Двоичная арифметика.

При сложении двоичных чисел в каждом разряде производится сложение цифр слагаемых и переноса из соседнего младшего разряда, если он имеется. При этом необходимо учитывать, что 1+1 дают нуль в данном разряде и единицу переноса в следующий.

Задание 11. Выполнить сложение двоичных чисел:

а) X=1101, Y=101;

б) X=1101, Y=101, Z=111;

При вычитании двоичных чисел в данном разряде при необходимости занимается 1 из старшего разряда. Эта занимаемая 1 равна двум 1 данного разряда.

Задание 12. Заданы двоичные числа X=10010 и Y=101. Вычислить X-Y.

Умножение двоичных чисел производится по тем же правилам, что и для десятичных с помощью таблиц двоичного умножения и сложения.

Пример. 1001* 101=?

Деление двоичных чисел производится по тем же правилам, что и для десятичных. При этом используются таблицы двоичного умножения и вычитания.

Пример. 1100.011 : 10.01=

Самостоятельная работа.

Выполнить перевод числа в соответствии с вариантом.

1. Перевести десятичное число А=121 в двоичную систему счисления.

2. Перевести двоичное число А=10001010111,01 в десятичную систему

счисления.

3. Перевести десятичное число А=135,656 в двоичную систему счисления с

точностью до пяти знаков запятой.

4. Перевести двоичное число А=10111011 в десятичную систему счисления

методом деления на основание.

5. Перевести восьмеричное число А=345,766 в двоичную систему счисления.

6. Записать десятичное число А=79,346 в двоичнодесятичной

форме.

7. Перевести десятичную дробь 64

A = 63 9 в двоичную систему счисления.

8. Перевести десятичное число А=326 в троичную систему счисления.

9. Перевести десятичную дробь 40

A = 63 5 в двоичную систему счисления.

10. Перевести десятичное число А=15,647 в двоичную систему счисления.

11. Перевести десятичное число А=1211 в пятеричную систему счисления.

12. Перевести десятичную дробь А=0,625 в двоичную систему счисления.

13. Перевести двоичную дробь А=0,1101 в десятичную систему счисления.

14. Перевести десятичное число А=113 в двоичную систему счисления.

15. Перевести двоичное число А=11001,01 в десятичную систему счисления.

16. Перевести десятичное число А=96 в троичную систему счисления.

Лабораторная работа №2. Измерение количества информации.

Цель работы: научить решать задачи на количественное измерение информационного объема текстовой информации.

Методические указания.

В связи с разными подходами к определению информации выделяют два подхода к измерению информации.

Субъективный (содержательный) подход

При данном подходе информация – это сведения, знания, которые человек получает из различных источников. Таким образом, сообщение информативно (содержит ненулевую информацию), если оно пополняет знания человека.

При субъективном подходе информативность сообщения определяется наличием в нем новых знаний и понятностью для данного человека (определение 1). Разные люди, получившие одно и тоже сообщение, по-разному оценивают количество информации, содержащееся в нем. Это происходит оттого, что знания людей об этих событиях, явлениях до получения сообщения были различными. Сообщение информативно для человека, если оно содержит новые сведения, и неинформативно, если сведения старые, известные. Таким образом, количество информации в сообщении зависит от того, насколько ново это сообщение для получателя и определяется объемом знаний, который несет это сообщение получающему его человеку.

При содержательном подходе возможна качественная оценка информации: достоверность, актуальность, точность, своевременность, полезность, важность, вредность…

С точки зрения информации как новизны мы не можем оценить количество информации, содержащейся в новом открытии, музыкальном стиле, новой теории развития.

Субъективный подход основывается на том, что получение информации, ее увеличение, означает уменьшение незнания или информационной неопределенности (определение 2).

Единица измерения количества информации называется бит (bit – binary digit), что означает двоичный разряд.

Количество информации – это количество бит в сообщении.

Сообщение, уменьшающее информационную неопределенность (неопределенность знаний) в два раза, несет для него 1 бит информации.

Что же такое «информационная неопределенность»?

Информационная неопределенность о некотором событии – это количество возможных результатов события.

Пример_1: Книга лежит на одной из двух полок – верхней или нижней. Сообщение о том, что книга лежит на верхней полке, уменьшает неопределенность ровно вдвое и несет 1 бит информации.

Сообщение о том, что произошло одно событие из двух равновероятных, несет 1 бит информации.

Пример_2: Нестеров живет на Ленинградской улице. Мы получили сообщение, что номер его дома есть число четное, которое уменьшило неопределенность. После получения такой информации, мы стали знать больше, но информационная неопределенность осталась, хотя и уменьшилась в два раза.

Пример_3: Ваш друг живет в 16-ти этажном доме. Сколько информации содержит сообщение о том, что друг живет на 7 этаже.

Решение: Информационная неопределенность (количество возможных результатов события) равна 16. Будем задавать вопросы, на которые можно ответить только «да» или «нет». Вопрос будем ставить так, чтобы каждый ответ приносил 1 бит информации, т.е. уменьшал информационную неопределенность в два раза.

Задаем вопросы: - Друг живет выше 8-го этажа?

  • Нет.

После этого ответа число вариантов уменьшилось в два раза, следовательно, информационная неопределенность уменьшилась в два раза. Получен 1 бит информации.

  • Друг живет выше 4-го этажа?

  • Да.

Число вариантов уменьшилось еще в два раза, получен еще 1 бит информации.

  • Друг живет выше 6-го этажа?

  • Да.

После данного ответа осталось два варианта: друг живет или на 7 этаже, или на 8 этаже. Получен еще 1 бит информации.

  • Друг живет на 8-м этаже?

  • Нет.

  • Все ясно. Друг живет на 7-м этаже.

Каждый ответ уменьшал информационную неопределенность в два раза. Всего было задано 4 вопроса. Получено 4 бита информации. Сообщение о том, что друг живет на 7-м этаже 16-ти этажного дома несет 4 бита информации.

Научный подход к оценке сообщений был предложен еще в 1928 году Р. Хартли.

Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий (равновероятность обозначает, что ни одно событие не имеет преимуществ перед другими). Тогда количество информации, заключенное в этом сообщении, - x бит и число N связаны формулой:

2x = N

где x – количество информации или информативность события (в битах);

N – число равновероятных событий (число возможных выборов).

Данная формула является показательным уравнением относительно неизвестной x. Решая уравнение, получим формулу определения количества информации, содержащемся в сообщении о том, что произошло одно из N равновероятных событий, которая имеет вид:

x = log2N

логарифм от N по основанию 2.

Если N равно целой степени двойки, то такое уравнение решается легко, иначе справиться с решением поможет таблица логарифмов.

Если N = 2 (выбор из двух возможностей), то x = 1 бит.

Возвращаясь к примеру_3, если воспользоваться формулой для подсчета количества информации в сообщении о том, что друг живет на 7-м этаже 16-ти этажного дома, то x = log216 = 4 бита.

Пример_4: Какое количество информации несет сообщение о том, что встреча назначена на июль?

Решение: В году 12 месяцев, следовательно, число равновероятных событий или число возможных выборов N = 12. Тогда количество информации x = log212. Чтобы решить это уравнение воспользуемся таблицей логарифмов или калькулятором.

Ответ: x = 3,58496 бита.

Пример_5: При угадывании целого числа в диапазоне от1 до N было получено 8 бит информации. Чему равно N?

Решение: Для того, чтобы найти число, достаточно решить уравнение N=2x , где x = 8. Поскольку 28 = 256, то N = 256. Следовательно, при угадывании любого целого числа в диапазоне от 1 до 256 получаем 8 бит информации.

Ситуации, при которых точно известно значение N, редки. Попробуйте по такому принципу подсчитать количество информации, полученное при чтении страницы книги. Это сделать невозможно.

Объективный (алфавитный) подход к измерению информации

Теперь познакомимся с другим способом измерения информации. Этот способ не связывает количество информации с содержанием сообщения, и называется объективный или алфавитный подход.

При объективном подходе к измерению информации мы отказываемся от содержания информации, от человеческой важности для кого-то.

Информация рассматривается как последовательность символов, знаков (определение3).

Количество символов в сообщении называется длиной сообщения.

Основой любого языка является алфавит.

Алфавит – это набор знаков (символов), в котором определен их порядок.

Полное число символов алфавита принято называть мощностью алфавита. Обозначим эту величину буквой M.

Например, мощность алфавита из русских букв равна 33:

мощность алфавита из английских букв равна 26.

При алфавитном подходе к измерению информации количество информации от содержания не зависит. Количество информации зависит от объема текста (т.е. от числа знаков в тексте) и от мощности алфавита. Тогда информацию можно обрабатывать, передавать, хранить.

Каждый символ несет x бит информации. Количество информации x, которое несет один символ в тексте, зависит от мощности алфавита M, которые связаны формулой 2x = M. Следовательно x = log2M бит.

Количество информации в тексте, состоящем из K символов, равно K*x или

K* log2M, где x – информационный вес одного символа алфавита.

Удобнее измерять информацию, когда мощность алфавита M равна целой степени числа 2. Для вычислительной системы, работающей с двоичными числами, также более удобно представление чисел в виде степени двойки.

Пример_6, в 2-символьном алфавите каждый символ несет 1 бит информации (2x = 2, откуда x = 1 бит).

Если M=16, то каждый символ несет 4 бита информации, т.к. 24 = 16.

Если M=32, то один символ несет 5 бит информации.

При M=64, один символ «весит» 6 бит и т.д.

Пример_7: Племя “Обезьяны” пишет письма, пользуясь 32-символьным алфавитом. Племя “Слоны” пользуется 64-символьным алфавитом. Вожди племен обменялись письмами. Письмо племени “Обезьяны” содержало 90 символов, а письмо племени “Слоны” – 80 символов. Сравните объем информации, содержащейся в письмах.

Решение: Мощность алфавита племени “Обезьяны” равна 32, информационный вес одного символа алфавита log232 = 5 бит. Количество информации в тексте, состоящем из 90 символов, равно 90*log232 = 450 бит.

Рассуждая аналогично про племя “Слоны”, получим: 80*log264 = 480 бит.

Следовательно, объем информации в письме вождя племени “Слоны” больше объема информации, которую передал в письме вождь племени “Обезьяны”.

Есть алфавит, который можно назвать достаточным. Это алфавит мощностью 256 символов. Алфавит из 256 символов используется для представления текстов в компьютере. В этом алфавите можно поместить практически все необходимые символы: латинские и русские буквы, цифры, знаки арифметических операций, скобки, знаки препинания, знаки псевдографики. Поскольку 256=28, то один символ этого алфавита «весит» 8 бит.

8 бит информации присвоили свое название – байт.

Байт – поле из 8 последовательных бит. Байт широко используется как единица измерения количества информации.

1 байт = 8 бит

Компьютерные текстовые редакторы работают с алфавитом мощности 256 символов. Поскольку в настоящее время при подготовке книг используются текстовые редакторы, легко посчитать объем информации в тексте.

Если один символ алфавита несет 1 байт информации, то надо просто сосчитать число символов, полученное значение даст информационный объем текста в байтах.

В любой системе единиц измерения существуют основные единицы и производные от них.

Для измерения больших объемов информации используются производные от байта единицы:

1 килобайт = 1 Кб = 210 байт = 1024 байта

1 мегабайт = 1 Мб = 210 Кб = 1024 Кб = 1048576 байт

1 гигабайт = 1 Гб = 210 Мб = 1024 Мб = 1048576 Кб = 1073741824 байт

Пример_8: Книга, набранная с использованием текстового редактора, содержит 70 страниц, на каждой странице 38 строк, в каждой строке 56 символов. Определить объем информации, содержащейся в книге.

Решение: Мощность компьютерного алфавита равна 256 символов. Один символ несет 1 байт информации. Значит 1 страница содержит 38*56=2128 байт информации. Объем всей информации в книге 2128*70=148960 байт.

Если оценить объем книги в килобайтах и мегабайтах, то

148960/1024 = 145,46875 Кбайт.

145,46875/1024 = 0,142059 Мбайт.

Алфавитный подход является объективным способом измерения информации в отличие от субъективного, содержательного, подхода. Только алфавитный подход пригоден при использовании технических средств работы с информацией.

В заключении следует отметить, что мы рассмотрели только два подхода к измерению количества информации. Наряду с этим, существуют и другие подходы, но это уже материал другой статьи.



Скачать документ

Похожие документы:

  1. Автоматизированных систем Информатика Лабораторные работы (1 семестр) Пермь 2006

    Лабораторная работа
    ... . 4. База заданий 1. Перевод чисел изодной СС в другую № Исходное число Новая системасчисления № Исходное число Новая системасчисления 1 15310 2 26 ...
  2. Учебно-методический комплекс учебной дисциплины (2)

    Учебно-методический комплекс
    ... ) §2.4. Перевод чисел изоднойсистемысчисления в другую Для переводачислаиз десятичной системысчисления в двоичную (восьмеричную или шестнадцатеричную): для целой части числа используется ...
  3. Учебно-методический комплекс учебной дисциплины (21)

    Учебно-методический комплекс
    ... ) §2.4. Перевод чисел изоднойсистемысчисления в другую Для переводачислаиз десятичной системысчисления в двоичную (восьмеричную или шестнадцатеричную): для целой части числа используется ...
  4. ВЫПОЛНЕНИЕ КУРСОВЫХ ПРОЕКТОВ (РАБОТ) ПО СПЕЦИАЛЬНОСТИ «ПРИКЛАДНАЯ ИНФОРМАТИКА (В МЕНЕДЖМЕНТЕ)» Методические рекомендации БАРНАУЛ 2011

    Курсовой проект
    ... кооперативного института. Разработка лабораторнойработы по теме "Моделирование узлов ЭВМ". ... переводаизоднойсистемысчисления в другую средствами Visual Basic. Разработка универсальной программы переводаизоднойсистемысчисления в другую ...
  5. Билет 1 1 1 Педагогика в системе наук о человеке Связь педагогики с другими науками Педагогика

    Документ
    ... если переводизодних единиц времени в другие ... работе; для методической подготовки студентов; с целью ... системасчисления характеризуется тем, что каждый знак всегда обозначает одно и то же число ... темы, последовательность теоретических и лабораторныхработ ...

Другие похожие документы..