textarchive.ru

Главная > Основная образовательная программа


В результате чтения, анализа и обсуждения диалогов и высказываний Миши и Маши учащиеся не только усваивают предметные знания, но и приобретают опыт построения понятных для партнера высказываний, учитывающих, что партнер знает и видит, а что – нет, задавать вопросы, использовать речь для регуляции своего действия, формулировать собственное мнение и позицию, контролировать действия партнёра, использовать речь для регуляции своего действия, строить монологическую речь, владеть диалоговой формой речи.

В основе составления учебных заданий лежат идеи изменения, соответствия, правила и зависимости. С точки зрения перспективы математического образования вышеуказанные идеи выступают как содержательные компоненты обучения, о которых у младших школьников формируются общие представления, которые являются основой для дальнейшего изучения математических понятий и для осознания закономерностей и зависимостей окружающего мира.

Особенностью курса является использование калькулятора как средства обучения

младших школьников математике, обладающего определёнными методическими возможностями. Калькулятор можно применять для постановки учебных задач, для открытия и усвоения способов действий, для проверки предположений и числового результата, для овладения математической терминологией и символикой, для выявления закономерностей и зависимостей, то есть использовать его для формирования УУД. Помимо этого в первом и во втором классах калькулятор можно использовать и для мотивации усвоения младшими школьниками табличных навыков. Например, проведение игры «Соревнуюсь с калькулятором», в которой один ученик называет результат табличного случая сложения на память, а другой – только после того, как он появится на экране калькулятора, убеждает малышей в том, что знание табличных случаев сложения (умножения) позволит им обыграть калькулятор. Это является определённым стимулом для усвоения табличных случаев сложе­ния, вычитания, умножения и деления и активизирует память учащихся

Формирование универсальных учебных действий (личностных, познавательных, регулятивных и коммуникативных) осуществляется в учебнике при изучении всех разделов начального курса математики: 1) Признаки предметов. Пространственные отношения. 2) Числа и величины. 3) Арифметические действия. 4) Текстовые задачи. 5) Геометрические фигуры. 6) Геометрические величины. 7) Работа с информацией. 8) Уравнения и буквенные выражения. Содержание разделов 1- 7 распределяется в курсе математики по классам и включается в различные темы в соответствии с логикой построения содержания курса, которая учитывает преемственность и взаимосвязь математических понятий, способов действий и психологию их усвоения младшими школьниками.

Например, раздел «Геометрические фигуры» представлен в учебнике темами:

1 класс. Точка. Прямая и кривая линии. Отрезок. Ломаная.

2 класс. Угол. Многоугольник. Прямоугольник. Квадрат. Геометрические фигуры: плоские и объёмные. Поверхности: плоские и кривые. Окружность. Круг. Шарю Сфера.

3 класс. Многогранники. Куб. Параллелепипед.

4 класс. Геометрические задания включены во все темы.

Раздел 8 завершает курс математики начальных классов. Содержание этого раздела не включается в другие разделы курса. На его изучение отводится 20 часов из предусмотренного резерва свободного учебного времени (40 ч на 4 года обучения). Включение данного раздела в предметное содержание курса обуславливается тем, что он предоставляет учащимся возможность познакомиться с новыми математическими понятиями (уравнения и буквенные выражения) и повторить весь ранее изученный материал в курсе математики начальных классов на более высоком уровне обобщения, применив для этого освоенные способы учебной деятельности.

Раздел «Работа с информацией» является неотъемлемой частью каждой темы начального курса математики. В соответствии с логикой построения курса учащиеся учатся понимать информацию, представленную различными способами (рисунок, текст, графические и символические модели, схема, таблица, диаграмма), использовать информацию для установления количественных и пространственных отношений, причинно - следственных связей. В процессе решения задач и выполнения различных учебных заданий ученики учатся понимать логические выражения, содержащие связки «и», «или», «если, то…», «верно /неверно, что…», «каждый», «все», «некоторые»и пр.

Другими словами, процесс усвоения математики так же, как и другие предметные курсы в начальной школе органически включает в себя информационное направление . как пропедевтику дальнейшего изучения информатики. Направленность курса на формирование приёмов умственной деятельности ( анализ и синтез, сравнение, классификация, аналогия, обобщение) в процессе усвоения математического содержания обеспечивает развитие алгоритмического и логического мышления, формирует у младших школьников представление о моделировании, что оказывает положительное влияние на формирование УУД. При этом сохраняется приоритет арифметической линии начального курса математики как основы для продолжения математического образования в 5-6 классах.

Овладение элементами компьютерной грамотности целесообразно начинать со второго класса, используя при этом компьютер как средство оптимизации процесса обучения математике Например,: для электронного тестирования, для работы с интерактивной доской, для получения информации ( под руководством учителя), для выполнения математических заданий, для формирования навыков работы с электронной почтой и др.

Углублённое изучение логической, алгоритмической линий и компьютерного моделирования целесообразно вынести на внеурочную деятельность. При этом необходимо учитывать оснащённость школы компьютерами, а также пожелания учеников и их родителей

На всех этапах усвоения математического содержания (кроме контроля) приоритетная роль отводится обучающим заданиям. Они могут выполняться как фронтально, так и в процессе самостоятельной работы учащихся в парах или индивидуально. Важно, чтобы полученные результаты самостоятельной работы (как верные, так и неверные) обсуждались коллективно и создавали условия для общения детей не только с учителем, но и друг с другом, что важно для формирования коммуникативных универсальных учебных действий (умения слышать и слушать друг друга, учитывать позицию собеседника и т. д.). В процессе такой работы у учащихся формируются умения: контролировать, оценивать свои действия и вносить соответствующие коррективы в их выполнение. При этом необходимо, чтобы учитель активно включался в процесс обсуждения. Для этой цели могут быть использованы различные методические приёмы: организация целенаправленного наблюдения; анализ математических объектов с различных точек зрения; установление соответствия между предметной - вербальной - графической - символической моделями; предложение заведомо неверного способа выполнения задания - «ловушки»; сравнение данного задания с другим, которое представляет собой ориентировочную основу; обсуждение различных способов действий.

Особенностью курса является новый методический подход к обучению решению задач, который сориентирован на формирование обобщённых умений: читать задачу, выделять условие и вопрос, устанавливать взаимосвязь между ними и, используя математические понятия, осуществлять перевод вербальной модели (текст задачи) в символическую (выражения, равенства, уравнения). Необходимым условием данного подхода в практике обучения является организация подготовительной работы к обучению решению задач, которая включает: 1) формирование у учащихся навыков чтения, 2) усвоение детьми предметного смысла сложения и вычитания, отношений «больше на», «меньше на», разностного сравнения (для этой цели используется не решение простых типовых задач, а приём соотнесения предметных, вербальных, графических и символических моделей); 3) формирование приёмов умственной деятельности; 4) умение складывать и вычитать отрезки и использовать их для интерпретации различных ситуаций.

Технология обучения решению текстовых задач арифметическим способом, нашедшая отражение в учебнике, включает шесть этапов: 1)подготовительный, 2) задачи на сложение и вычитание, 3) смысл действия умножения, отношение «больше в…,4) задачи на сложение, вычитание, умножение, 5) смысл действия деления, отношения «меньше в…», кратного сравнения, 6) решение арифметических задач на все четыре арифметических действия ( в том числе задачи, содержащие зависимость между величинами, характеризующими процессы: движения (скорость, время, расстояние), работы (производительность труда, время, объем работы), купли – продажи (цена товара, количество товара, стоимость), задачи на время (начало, конец, продолжительность события).

Основная цель данной технологии - формирование общего умения решать текстовые задачи. При этом существенным является не отработка умения решать определенные типы задач, ориентируясь на данные образцы, а приобретение опыта в семантическом и математическом анализе разнообразных текстовых конструкций, то есть речь идёт не только о формировании предметных математических умений, но и о формировании УУД. Для приобретения этого опыта деятельность учащихся направляется специальными вопросами и заданиями, при выполнении которых они учатся сравнивать тексты задач, составлять вопросы к данному условию, выбирать схемы, соответствующие задаче, выбирать из данных выражений те, которые являются решением задачи, выбирать условия к данному вопросу, изменять текст задачи в соответствии с данным решением, формулировать вопрос к задаче в соответствии с данной схемой. и др.

В результате использования данной технологии большая часть детей овладевают умением самостоятельно решать задачи в 2 -3 действия, составлять план решения задачи, моделировать текст задачи в виде схемы, таблицы, самостоятельно выполнять аналитико-синтетический разбор задачи без наводящих вопросов учителя, выполнять запись решения арифметических задач по действиям и выражением, при этом учащиеся испытывают интерес к каждой новой задаче и выражают готовность и желание к решению более сложных текстовых задач ( в том числе логических, комбинаторных, геометрических).

Ценностные ориентиры содержания курса «Математика»

  1. Математика является важнейшим источником принципиальных идей для всех естественных наук и современных технологий. Весь научно технический прогресс связан с развитием математики. Владение математическим языком, алгоритмами, понимание математических отношений является средством познания окружающего мира, процессов и явлений, происходящих в природе и в обществе. Поэтому так важно сформировать интерес к учебному предмету «Математика» у младших школьников, который станет основой для дальнейшего изучения данного предмета, для выявления и развития математических способностей учащихся и их способности к самообразованию.

  2. Математическое знание – это особый способ коммуникации:

  • наличие знакового (символьного) языка для описания и анализа действительности;

  • участие математического языка как своего рода «переводчика» в системе научных коммуникаций, в том числе между разными системами знаний;

  • использование математического языка в качестве средства взаимопонимания людей с разным житейским, культурным, цивилизованным опытом.

Таким образом, в процессе обучения математике осуществляется приобщение подрастающего поколения к уникальной сфере интеллектуальной культуры.

  1. Овладение различными видами учебной деятельности в процессе обучения математике является основой изучения других учебных предметов, обеспечивая тем самым познание различных сторон окружающего мира.

  2. Успешное решение математических задач оказывает влияние на эмоционально – волевую сферу личности учащихся, развивает их волю и настойчивость, умение преодолевать трудности, испытывать удовлетворение от результатов интеллектуального труда.

Место учебного предмета в учебном плане

В Федеральном базисном образовательном плане на изучение математики в каждом классе начальной школы отводится 4 часа в неделю, всего 540 часов.

Результаты изучения учебного предмета выпускниками начальной школы

В результате изучения курса математики по данной программе у выпускников начальной школы будут сформированы математические (предметные) знания, умения, навыки и представления, предусмотренные программой курса, а также личностные, регулятивные, познавательные, коммуникативные универсальные учебные действия как основа умения учиться.

В сфере личностных универсальных действий у учащихся будут сформированы: внутренняя позиция школьника на уровне положительного отношения к школе; учебно-познавательный интерес к новому материалу и способам решения новой учебной задачи; готовность целенаправленно использовать математические знания, умения и навыки в учебной деятельности и в повседневной жизни, способность осознавать и оценивать свои мысли, действия и выражать их в речи, соотносить результат действия с поставленной целью, способность к организации самостоятельной учебной деятельности.

Изучение математики способствует формированию таких личностных качеств как любознательность, трудолюбие, способность к организации своей деятельности и к преодолению трудностей, целеустремленность и настойчивость в достижении цели, умение слушать и слышать собеседника, обосновывать свою позицию, высказывать свое мнение.

Выпускник получит возможность для формирования:

- внутренней позиции школьника на уровне понимания необходимости учения, выраженного в преобладании учебно-познавательных мотивов;

- устойчивого познавательного интереса к новым общим способам решения задач

- адекватного понимания причин успешности или неуспешности учебной деятельности.

Метапредметные результаты изучения курса (регулятивные, познавательные и коммуникативные универсальные учебные действия)

Регулятивные универсальные учебные действия

Выпускник научится:

- принимать и сохранять учебную задачу и активно включаться в деятельность, направленную на её решение в сотрудничестве с учителем и одноклассниками;

- планировать свое действие в соответствии с поставленной задачей и условиями ее реализации, в том числе во внутреннем плане;

- различать способ и результат действия; контролировать процесс и результаты деятельности;

- вносить необходимые коррективы в действие после его завершения, на основе его оценки и учета характера сделанных ошибок;

- выполнять учебные действия в материализованной, громкоречевой и умственной форме;

- адекватно оценивать свои достижения, осознавать возникающие трудности и искать способы их преодоления

Выпускник получит возможность научиться:

• в сотрудничестве с учителем ставить новые учебные задачи;

• проявлять познавательную инициативу в учебном сотрудничестве;

• самостоятельно учитывать выделенные учителем ориентиры действия в новом учебном материале;

• осуществлять констатирующий и предвосхищающий контроль по результату и по способу действия, актуальный контроль на уровне произвольного внимания;

• самостоятельно адекватно оценивать правильность выполнения действия и вносить необходимые коррективы в исполнение как по ходу его реализации, так и в конце действия.

-Познавательные универсальные учебные действия

Ученик научится:

- осуществлять поиск необходимой информации для выполнения учебных заданий с использованием учебной литературы;

- использовать знаково-символические средства, в том числе модели и схемы для решения задач;

- ориентироваться на разнообразие способов решения задач;

- осуществлять анализ объектов с выделением существенных и несущественных признаков;

- осуществлять синтез как составление целого из частей;

- проводить сравнение и классификацию по заданным критериям;

- устанавливать причинно-следственные связи;

- строить рассуждения в форме связи простых суждений об объекте, его строении, свойствах и связях;

- обобщать, т.е. осуществлять генерализацию и выведение общности для целого ряда или класса единичных объектов на основе выделения сущностной связи;

- осуществлять подведение под понятие на основе распознавания объектов, выделения существенных признаков и их синтеза;

- устанавливать аналогии;

- владеть общим приемом решения задач.

Выпускник получит возможность научиться:

- создавать и преобразовывать модели и схемы для решения задач;

- осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий;

- осуществлять синтез как составление целого из частей, самостоятельно достраивая и восполняя недостающие компоненты

- осуществлять сравнение и классификацию, самостоятельно выбирая основания и критерии для указанных логических операций;

- строить логическое рассуждение, включающее установление причинно-следственных связей;

- произвольно и осознанно владеть общим умением решать задачи.

Коммуникативные универсальные учебные действия

Выпускник научится:

- выражать в речи свои мысли и действия;

- строить понятные для партнера высказывания, учитывающие, что партнер видит и знает, а что нет;

- задавать вопросы;

- использовать речь для регуляции своего действия.

Выпускник получит возможность научиться:

- адекватно использовать речь для планирования и регуляции своего действия;

- аргументировать свою позицию и координировать её с позициями партнеров в совместной деятельности;

- осуществлять взаимный контроль и оказывать в сотрудничестве необходимую помощь.

Предметные результаты выпускника начальной школы

Числа и величины

Выпускник научится:

• читать, записывать, сравнивать, упорядочивать числа от нуля до миллиона;

• устанавливать закономерность — правило, по которому составлена числовая последовательность, и составлять последовательность по заданному или самостоятельно выбранному правилу (увеличение/уменьшение числа на несколько единиц, увеличение/уменьшение числа в несколько раз);

• группировать числа по заданному или самостоятельно установленному признаку;

• читать и записывать величины (массу, время, длину, площадь, скорость), используя основные единицы измерения величин и соотношении между ними (килограмм — грамм; год — месяц — неделя — сутки — час — минута, минута — секунда; километр — метр, метр — дециметр, дециметр — сантиметр, метр — сантиметр, сантиметр — миллиметр), сравнивать названные величины, выполнять арифметические действия с этими величинами.

Выпускник получит возможность научиться:

• классифицировать числа по одному или нескольким основаниям, объяснять свои действия;

• выбирать единицу для измерения данной величины (длины, массы, площади, времени), объяснять свои действия.

Арифметические действия

Выпускник научится:

• выполнять письменно действия с многозначными числами (сложение, вычитание, умножение и деление на однозначное, двузначное числа в пределах 10 000) с использованием таблиц сложения и умножения чисел, алгоритмов письменных арифметических действий (в том числе деления с остатком);

• выполнять устно сложение, вычитание, умножение и деление однозначных, двузначных и трёхзначных чисел в случаях, сводимых к действиям в пределах 100 (в том числе с нулём и числом 1):

• выделять неизвестный компонент арифметического действия и находить его значение;

• вычислять значение числового выражения (содержащего 2—3 арифметических действия, со скобками и без скобок).

Выпускник получит возможность научиться:

• выполнять действия с величинами;

• использовать свойства арифметических действий для удобства вычислений;

• проводить проверку правильности вычислений (с помощью обратного действия, прикидки и оценки результата действия).

Работа с текстовыми задачами

Выпускник научится:

• анализировать задачу, устанавливать зависимость между величинами, взаимосвязь между условием и вопросом задачи, определять количество и порядок действий для решения задачи, выбирать и объяснять выбор действий;

• решать учебные задачи и задачи, связанные с повседневной жизнью, арифметическим способом (в 2—3 действия);

• оценивать правильность хода решения и реальность ответа на вопрос задачи.

Выпускник получит возможность научиться:

• решать задачи на нахождение доли величины и величины по значению её доли (половина, треть, четверть, пятая, десятая часть);

• решать задачи в 3—4 действия;

• находить разные способы решения задач

• Решать логические и комбинаторные задачи, используя рисунки

Пространственные отношения.

Геометрические фигуры

Выпускник научится:

• описывать взаимное расположение предметов в пространстве и на плоскости;

• распознавать, называть, изображать геометрические фигуры (точка, отрезок, ломаная, прямой угол, многоугольник, треугольник, прямоугольник, квадрат, окружность, круг);

• выполнять построение геометрических фигур с заданными измерениями (отрезок, квадрат, прямоугольник) с помощью линейки, угольника;

• использовать свойства прямоугольника и квадрата для решения задач;

• распознавать и называть геометрические тела (куб, шар);

• соотносить реальные объекты с моделями геометрических фигур.

Выпускник получит возможность научиться:

• распознавать плоские и кривые поверхности

• распознавать плоские и объёмные геометрические фигуры

• распознавать, различать и называть геометрические тела: параллелепипед, пирамиду, цилиндр, конус.;

Геометрические величины

Выпускник научится:

• измерять длину отрезка;

• вычислять периметр треугольника, прямоугольника и квадрата, площадь прямоугольника и квадрата;

• оценивать размеры геометрических объектов, расстояния приближённо (на глаз).

Выпускник получит возможность научиться вычислять периметр и площадь различных фигур прямоугольной формы.

Работа с информацией

Выпускник научится:

• читать несложные готовые таблицы;

• заполнять несложные готовые таблицы;

• читать несложные готовые столбчатые диаграммы.

Выпускник получит возможность научиться:

• читать несложные готовые круговые диаграммы;

• достраивать несложную готовую столбчатую диаграмму;

• сравнивать и обобщать информацию, представленную в строках и столбцах несложных таблиц и диаграмм;

• распознавать одну и ту .же информацию, представленную в разной форме- (таблицы, диаграммы, схемы);

планировать несложные исследования, собирать и представлять полученную информацию с помощью таблиц и диаграмм;

интерпретировать информацию, полученную при проведении несложных исследований (объяснять, сравнивать и обобщать данные, делать выводы и прогнозы).

Уравнения. Буквенные выражения

Выпускник получит возможность научиться

• Решать простые и усложненные уравнения на основе правил о взаимосвязи компонентов и результатов арифметических действий

• Находить значения простейших буквенных выражений при данных числовых значениях входящих в них букв.



Скачать документ

Похожие документы:

  1. Пояснительная записка (143)

    Пояснительная записка
    ... программа состоит из трех разделов: пояснительнойзаписки; основного содержания с примерным распределением учебных ... программа состоит из трех разделов: пояснительнойзаписки; основного содержания с примерным распределением учебных ...
  2. Пояснительная записка (752)

    Пояснительная записка
    ... : 68ч Учитель: Пальчевская Светлана Анатольевна Пояснительнаязаписка В программе реализуется художественно – эстетическое ... 34ч Учитель: Пальчевская Светлана Анатольевна Пояснительнаязаписка Произведения художественной литературы раскрывают перед ...
  3. Пояснительная записка (16)

    Пояснительная записка
    ... образовательного учреждения содержит следующие разделы: • пояснительнуюзаписку; • программу духовно-нравственного развития и ... Примерная программа включает следующие разделы: — пояснительнуюзаписку, в которой даётся общая характеристика предмета ...
  4. Пояснительная записка (628)

    Основная образовательная программа
    ... образовательная программа содержит следующие разделы: пояснительнаязаписка; планируемые результаты освоения обучающимися основной ... 1 классе» (5 ч) Проверка знаний (1 ч) ОКРУЖАЮЩИЙ МИР ПОЯСНИТЕЛЬНАЯЗАПИСКА Программа разработана на основе Федерального ...
  5. Пояснительная записка (199)

    Пояснительная записка
    ... предзащит дипломных, бакалаврских и магистерских сочинений. Пояснительнаязаписка к спецсеминару «Российские партии и их ... вопросы реформы местного самоуправления в РФ. Пояснительнаязаписка к спецсеминару «Политико-властные отношения в современной ...

Другие похожие документы..