textarchive.ru

Главная > Книга


При физической тренировке нагрузка сначала вызывает значительное учащение сердечных сокращений, но затем начинаются адаптивные изменения на микроуровне, т.е., опять-таки биохимическом, благодаря чему сердце работает более эффективно. Оно сокращается сильней, ударный объем возрастает, а ЧСС уменьшается.

Способность к адаптации – универсальное свойство всего живого. Благодаря ему организмы могут существовать в самых разнообразных условиях при воздействии самых различных факторов. Более того, болезнь, как уже говорилось выше, тоже является формой приспособления к неблагоприятным для данного организма условиям. К сожалению, для многих врачей такая мысль представляется дикой. А между тем еще И. П. Павлов сказал «понимаемые в глубоком смысле физиология и медицина неотделимы». Нашему великому физиологу принадлежат и слова о том, что многие изменения, которые происходят в организме при какой-либо патологии, представляют собой «физиологическую меру против болезни». Поэтому врач, умеющий мыслить физиологически, способен видеть корни и сущность болезни гораздо лучше, чем тот, кто подходит к лечению чисто механически по принципу «раз у больного изменился какой-то показатель, нужно воздействовать на организм так, чтобы вернуть этот показатель к нормальным величинам». Понятие «нормализация» у таких врачей по сути своей антифизиологично. Рассмотрим в связи с этим наглядный пример.

Пример 2.15. Есливкровиучеловекаобнаруженоповышенноеколичествоэритроцитов, тоздесьвозможнытрипринципиальноразличных ситуации. Соответственноитактикаврачадолжнабытьадекватной этимситуациям.

А. Наш пациент длительное время живет в горах на большой высоте. Тогда увеличение количества эритроцитов не имеет никакого отношения к патологии. Это приспособительная физиологическая реакция в ответ на воздействие пониженного содержания кислорода в атмосфере.

В. Если такой же сдвиг обнаружен у человека, живущего на равнине, то мы имеем дело с физиологической мерой против гипоксии, возникшей в организме в связи с какими-то нарушениями в нем самом. Бороться с этим сдвигом, как таковым, бессмысленно, потому что и здесь он носит приспособительный характер. Необходимо найти и попытаться устранить причину возникновения данного сдвига. И тогда организм сам поставит все на место.

С. Наконец, возможна и третья ситуация. В результате какого-то патологического воздействия (новообразование, токсические вещества и т. п.) происходит постоянное раздражение тканей, которые прямо или косвенно участвуют в образовании эритроцитов. В этом случае ответная реакция не только свидетельствует о наличии патологического процесса, но и не имеет приспособительного значения.

Таким образом понимание принципа адаптивности в работе организма помогает усвоить и положение о том, что патология – это измененная физиология. В больном организме протекают те же реакции, что и в здоровом, но на других уровнях, с другими количественными характеристиками. Борясь с возникшими нарушениями, организм использует уже имеющиеся у него механизмы. Ничего другого создать он не может, потому что эти другие механизмы не записаны в его генах. Поэтому очень важно уметь правильно оценивать работу физиологических систем в условиях функциональной нагрузки, требующей адаптивной, приспособительной реакции.

В связи со всем сказанным необходимо еще раз напомнить приведенное ранее принципиальное соображение. Организм не может реагировать сразу на все падающие на него раздражения. Он выбирает из них то, которое в данной ситуации является наиболее важным и отвечает прежде всего на него. При этом могут произойти такие изменения, которые потребуют для их компенсации принять дополнительные физиологические меры. Это в свою очередь может вызвать необходимость новых изменений и т.д. Такая цепочка иногда оказывается весьма длинной и на любом из ее этапов может наступить и абсолютная компенсация, и относительная компенсация и, что хуже всего, истощение, срыв адаптационных возможностей организма.

Умение распознавать приспособительный характер возникающих в организме реакций приходит далеко не сразу. Но, если удастся его выработать, то такой врач безусловно, сможет мыслить физиологически и будет успешно лечить своих больных, потому что для него станет ясной основная задача «настоящего» врача – искусственным путем помогать организму оптимально использовать собственные защитные механизмы. Поясним это еще одним примером.

Пример 2.16. Учеловекаобнаруженоувеличениеграницсердцаили, говоряжитейскимязыком, расширениесердца. Кактрактоватьэто явление? Еслинашпациентиспытываетбольшиефизическиенагрузки ивсвязисэтимвсердцеусилилисьпроцессысинтезабелка, масса сердцаувеличиласьионосталосокращатьсясбольшейсилой, тоэтоприспособительнаяреакция, носящаяоптимальныйхарактер. Остается толькосказатьсердцерасширилосьиназдоровье. Произошлатак называемаярабочаягипертрофиясердца.

Однако возможна и другая ситуация. Расширение сердца и здесь носит приспособительный характер, но эта реакция уже не оптимальная. В данном случае организм не мог увеличить массу сердца, так как оно было ослабленным. При физических нагрузках такое сердце не может справиться с увеличенным притоком крови путем усиления сокращений ив силу этого начинает растягиваться, грубо говоря, как резиновая камера. В соответствии с законом Франка – Стерлинга при дополнительном растяжении волокон миокарда они сокращаются сильней. Именно в этом и состоит адаптивный характер растяжения сердца. Но, как уже говорилось, такая реакция не оптимальна. При дальнейшем растяжении может быть достигнут предел, после которого сокращения сердца станут ослабевать. Этот переход от положительного эффекта к отрицательному нужно объяснять уже на микроуровне.

Таким образом благодаря способности к адаптации любая живая система может приспосабливаться к действию самых разнообразных факторов. Приспосабливаться всегда, в любых условиях, даже из последних сил. Но, как мы видели, чем меньше остается сил, тем менее эффективным становится приспособление.

Рассмотренные принципы физиологического мышления тесно связаны между собой. Так, адаптивность физиологических реакций, безусловно, носит целесообразный характер, что обусловлено естественным отбором. А объединяет эти положения принцип регуляции, который конкретизирует их реализацию.

Нам осталось рассмотреть еще один принцип. Он стоит несколько особняком но также играет важную роль при выработке умения мыслить физиологически.

2.6. Термодинамическийподходвфизиологии

Многие физиологические явления можно понять и объяснить, если использовать при этом термодинамический подход. Он основан на положениях, составляющих первый и второй законы термодинамики.

В популярном изложении эти законы весьма просты. Первый закон постулирует невозможность как возникновения энергии из ничего, так и бесследного ее исчезновения. Все энергетические процессы представляют собой превращения одного вида энергии в другой. Если при этом совершается какая-то работа, то часть энергии теряется в виде тепла, которое рассеивается в пространстве. Поэтому в соответствии с первым законом термодинамики невозможен не только вечный двигатель первого рода т. е., машина, которая постоянно работала бы только за счет энергии, извлекаемой из самой себя, но и двигатель с КПД 100%. Если эти закономерности понятны, то не составит труда ответить на следующий вопрос.

Пример 2.17. Присокращениисердцаоновыбрасываетваортупорцию крови, сообщивейприэтомНекоторуюэнергию. Впокое 95-97 % этойэнергиирасходуетсянапреодолениесопротивлениясосудистой системы, чтонаходитотражениеввозникновениикровяногодавления. Ваортеоносоставляет 120-130 ммрт. ст. Вполыхвенахдавление падаетдонуля. Кудажедеваласьполученнаякровьюэнергия?

Ответ. Энергия была потрачена на преодоление сил трения, возникающих при течении крови по сосудам, и превратилась в тепло. Отсюда можно сделать существенный практический вывод, ответив на следующим вопрос. Как определить затраты энергии вцелом организме, например, за сутки? Ответ очевиден. В конечном счете псе виды энергии в организме превращаются в тепло. Поэтому достаточно измерить количество тепла, выделенное человеком пли животным за определенное время.

Примечание. Вам должно быть понятно, какие условия следует соблюдать, чтобы получить правильный ответ. Во-первых, в ходе исследования человек не должен производить механическую работу. Если, например, он будет поднимать штангу, то часть энергии уйдет на перемещение груза и не будет учтена. Мы сможем уловить только ту долю этой энергии, которая превратится в тепло, поскольку мышца, как и любой другой двигатель, не может работать с КПД 100 %. Во-вторых, за время опыта не должна изменяться масса тела. Если человек толстеет, то часть энергии уйдет на синтез дополнительных веществ. Если худеет, выделится дополнительная энергия за счет распада собственных веществ организма.

Термодинамический подход может понадобиться и при решении чисто медицинских вопросов. Вот один из многих возможных примеров.

Пример 2.18. Дажемалоискушенныевмедицинелюдиимеютпредставлениеотом, чтоинфарктмиокардавозникаетиз-занарушения кровоснабжениясердца, например, приобразованиитромбоввкоронарныхсосудахилисильномихспазме. Нокакобъяснитьнестольуж редкиеслучаиинфаркта, когдакровоснабжениесердечноймышцынеиспытываетстольсерьезныхнарушений? Влитературеописантакой случай. Человек, перенесшийинфарктмиокарда, сталпослевыздоровлениязаниматьсяоздоровительнымбегом. Ксожалению, онилинезнал, илизабылважноеправило, котороеобязательноследовалособлюдать, аименнобежатьвдостаточномедленномтемпеинивкоемслучае неподдаватьсяискушениюпосоревноватьсяскем-нибудь. Всамомконцедистанциибегунаобогналагруппамолодежи. Посколькуоставалось пробежатькаких-то 100 метров, онрешилускоритьбегидогнать молодых. И, действительно, догнал. Итутжеупалзамертво.

Этот трагический исход вполне понятен при термодинамическом подходе.

Сердце не сможет работать, если оно не ^удет получать ровно столько энергии, сколько будет расходовать. А у больного сердца возможности в этом отношении ограничены. Поэтому ускорение бега оказалось фатальным.

Если первый закон термодинамики говорит о количественных соотношениях при превращениях энергии, то второй закон определяет направление процесса. Состояние любой системы можно охарактеризовать двумя термодинамическими параметрами – свободная энергия и энтропия. Свободная энергия – это та часть общей энергии, которая может быть превращена в работу. Энтропия – мера неупорядоченности системы, хаотичности ее состояния.

Если в клетке происходит синтез белковых молекул, то упорядоченность повышается, молекулы становятся более сложными, неоднородными в разных направлениях. Соответственно энтропия клетки понижается, а свободная энергия повышается. При распаде молекул картина обратная и энтропия повышается, а свободная энергия понижается.

Второй закон термодинамики утверждает, что при самопроизвольных процессах (т.е., без какого-либо вмешательства извне) свободная энергия системы всегда уменьшается вплоть до нуля, а энтропия возрастает до максимума.

Житейские иллюстрации второго закона общеизвестны. Нагретые тела самопроизвольно остывают, но не наоборот. Сжатые газы стремятся расшириться, а не сжаться еще больше. Молекулы сахара после растворения в воде постепенно равномерно распределяются во всем ее объеме, а не собираются в одном месте. Заряженный конденсатор из-за утечки в конце концов полностью разрядится. Фактор времени здесь никакой роли не играет. Важно лишь, что рано или поздно, через 10 или 100 лет это неминуемо произойдет. Но даже за тысячи лет разряженный конденсатор не сможет самопроизвольно зарядиться. Все это простые и понятные примеры. Сложнее обстоит дело с живыми организмами.

Пример 2.19. Синтезбелковоймолекулыначинаетсяспостроенияее первичнойструктуры. Дляэтогонеобходимывесьмазначительныезатратыэнергии, атакжеполучениеинформации, котораяпередается спомощьюнуклеиновыхкислот. Авотобразованиетретичнойструктурыпроисходитсамопроизвольно. Молекула«сама»свертывается вклубок, причемстрогоспецифичнодлякаждогобелка. Почему?

Ответ. Если процесс идет самопроизвольно, значит, при этом свободная энергия системы уменьшается. Как же обстоит дело в данном случае? Аминокислоты, входящие в состав белковой молекулы, могут быть гидрофильными или гидрофобными. Для удержания гидрофобных групп в воде требуется дополнительная энергия. Но в соответствии с вторым законом термодинамики любая система стремится уменьшить запас свободной энергии. Поэтому молекула самопроизвольно свертывается таким образом, что гидрофобные группы «прячутся» внутри ее, так сказать, подальше от воды. А поскольку первичные структуры индивидуальных белков различаются, в частности, по расположению гидрофобных групп, то и свертывание каждой молекулы происходит строго индивидуально.

Очень важным для понимания многих вопросов является понятие градиента.

Если скорость – это изменение какой-либо величины во времени, то градиент – изменение величины в пространстве. Например, в кровеносной системе существует градиент давления – оно постепенно уменьшается от аорты до полых вен. В любом помещении имеется градиент температуры – чем ближе к потолку, тем воздух теплее. В месте впадения в океан очень больших рек можно обнаружить весьма значительный градиент солености воды – чем ближе к устью, тем вода менее соленая.

Все процессы в организме могут идти в одном из двух направлений – или по градиенту, или противградиента. По градиенту – значит, от большего к меньшему. Против – от меньшего к большему. Исходя из второго закона термодинамики, можно утверждать, что, если процесс идет против градиента, то для этого обязательно требуются затраты энергии. По градиенту же процесс идет самопроизвольно. Здесь можно провести аналогию с деньгами. Чтобы их накопить, надо работать, затрачивать энергию. А чтобы потратить накопленное, особого труда не требуется.

При анализе различных физиологических процессов термодинамический подход сразу же позволяет установить, на каких этапах необходимо затрачивать энергию, а когда процесс может идти самопроизвольно.

Пример 2.20. Дляобразованияивыделенияпотанеобходимаэнергия, котораяобеспечиваетработупотовыхжелез. Послетогокакпотвыделился, онбудетиспарятьсясповерхностикожисамопроизвольнобез затратыэнергииорганизмом. Однакодляэтогонеобходимоналичиеградиентадавленияпаровводымеждуповерхностьюкожииокружающим воздухом. Поэтому* вбанепотпрактическинеиспаряется, астекаетпокоже. Внормальныхусловияхпотбудетиспарятьсябыстрее, еслидополнительнонагретькожу. Ноздесьужеорганизмупридется потратитьэнергию, чтобыувеличитьпритокккоженагретойкрови.

Процессы, которые идут с затратой энергии (против градиента), называются активными, а без расхода энергии, самопроизвольно (по градиенту) – пассивными. Умение различать пассивные и активные процессы необходимо при решении некоторых задач. Таких как, например, эта.

Задача. Прираздражениимышцыодиночнымиударамиэлектрического токаонакаждыйразсокращаетсяирасслабляется. Затеммышцу охлаждаютипродолжаютраздражать. Вэтихусловияхонаработает болеемедленно. Теперьнадоответитьнадвавопроса

1.Почемузамедляетсяработамышцы?

2.Чтозамедлитсявбольшейстепени– сокращениеилирасслабление?

НакопленныйВамиопытдолженподсказать, чтозадачунужно решатьсразунамикроуровне.

Ответ. Мышца, как и любой другой орган, работает за счет химической энергии, которая непрерывно освобождается в клетках. Главный носитель энергии – АТФ. Постоянный ее распад требует быстрого ресинтеза за счет соответствующих химических реакций. Известно, что охлаждение замедляет скорость химических реакций. Отсюда ясен ответ на первый вопрос. Сложнее обстоит дело со вторым. С ним может справиться только тот, кто хотя бы в общих чертах представляет себе механизм мышечного сокращения и поэтому сможет работать на микроуровне.

Если такое представление имеется, то остается только уточнить, какие процессы являются активными, а какие пассивными. Ключевую роль здесь играют ионы кальция. Они обеспечивают электромеханическое сопряжение т.е., переход электрического процесса (потенциал действия) в механический (укорочение мышечных волокон). Ионы кальция в большом количестве находятся в саркоплазматическом ретикулуме. При деполяризации его мембраны потенциалом действия ионы кальция выходят по градиенту и способствуют соединению актина с миозином – поперечные мостики толстых протофибрилл присоединяются к тонкой протофибрилле и смещают ее «на один шаг». Далее каждый мостик должен отсоединиться и затем взаимодействовать со следующим участком тонкой протофибриллы и т. д. Но чтобы мостики могли отщепиться, ионы кальция должны возвратиться «домой» – в саркоплазматический ретикулум – против градиента. Это уже активный процесс, который требует затраты энергии АТФ для работы так называемого кальциевого насоса. Теперь понятно, что основная энергия в мышце тратится не на сокращение, а на расслабление. Поэтому при охлаждении мышцы в большей степени замедлится фаза расслабления.

Такая же картина может наблюдаться при утомлении мышцы. Здесь тоже имеет место недостаток АТФ. Когда мы говорим, что «затекла» рука или нога – это проявляется нарушение нормального расслабления мышц. Вернемся к тому, что энтропия любой системы всегда стремится к увеличению. Дотошный читатель может задать каверзный вопрос – а как же тогда объяснить существование жизни на Земле? Ведь жизнь – это высокоупорядоченное состояние и, следовательно, она Определяет низкий уровень энтропии, которая вопреки второму закону термодинамики не желает повышаться уже сотни миллионов лет.

Действительно, если рассматривать Землю изолированно, то получаются большие неприятности. Но все дело в том, что жизнь на Земле существует только потому, что она использует энергию, поступающую от Солнца. В общей системе Земля – Солнце понижение энтропии, связанное с существованием на Земле живых существ, сопровождается огромным увеличением энтропии на Солнце (потеря им энергии и массы). Поэтому в этой общей системе в целом энтропия повышается. Так что со вторым законом и здесь все в порядке.

Наверно, Вы еще не забыли о больном, перенесшем инфаркт миокарда и погибшем при попытке ускорить бег. В связи с этим нужно хотя бы кратко остановиться на важнейшем для биологии и медицины термодинамическом понятии. Это – стационарное состояние. В очень упрощенной форме его можно определить как способность системы уравновешивать расход и поступление энергии. При любых воздействиях на живую систему происходят изменения энергетических потоков. Но затем они обязательно должны уравновеситься. В результате стационарное состояние системы или вернется к исходному уровню, или установится на новом.

Приведем простой пример. В покое у большинства здоровых людейЧСС составляет 60-70 уд/мин. Если человек побежит, ЧСС начнет возрастать – 90-110-130-140 уд/мин и т.д. Но через какое-то время неизбежно установится новое стационарное состояние. Допустим, ЧСС достигнет 160-170 уд/мин и стабилизируется на этом уровне, так как теперь работа сердца будет удовлетворять возросшие потребности организма.

Из сказанного вытекает важнейший вывод. Если живая система в условиях функциональной нагрузки окажется неспособной установить новое стационарное состояние, то она неминуемо погибнет из-за нехватки энергии. Именно это и произошло с больным, о котором шла речь.

В заключение попытайтесь самостоятельно решить задачу, которая носит скорее развлекательный характер, так как можно предложить только идею, решения, но тем не менее в научном отношении она вполне обоснована и лежит на стыке биологии и термодинамики.

Задача. Какизвестно, в)Мировомокеаненаходитсяогромноеколичествозолота. Ноонораствореновещеболееогромномколичествеводы ипытатьсяизвлечьегоприпомощикаких-тотехническихсредств бессмысленно. Потребуютсяфинансовыезатраты, которыенамного превысятстоимостьдобываемогодрагоценногометалла.

Предложитетеоретическитакойспособизвлечениязолотаизморскойводы, который, еслибыегоудалосьосуществить, позволитвести добычусминимальнымизатратами.

Подведем предварительные итоги. Мы разобрали некоторые положения, которые должны помочь Вам осваивать умение мыслить физиологически. Однако даже при наличии такого умения его реализация, например, при решении задач может натолкнуться на трудности. В частности, остается неясным, как ответить на главный вопрос, который должен ставиться (но, увы, далеко не всегда это происходит при решении самых различных задач). Это поистине коронный вопрос. Счегоначать?

Рассмотрим следующий пример.

Пример 2.21. Представьте, чтоВамдаютсписокизнесколькихдесятковразличныхфакторов (тепло, холод, избытокуглекислогогаза, физическаянагрузка, действиеадреналина, кровопотеряит.д). Требуетсяответить, каккаждыйизэтихфакторовповлияетнавеличину кровяногодавления. Вфизиологииимеютсявсегодвавариантаответа наподобныевопросы. Привоздействиилюбогоагентафизиологические показателимогутилиувеличиватьсяилиуменьшаться. Нопытаться механическизапоминать, какизменитсятотилиинойпоказательпри действиикакого-либофакторатруднодаималоэффективно. Хотя, ксожалению, многиепривыкаютдействоватьименнотакимобразом. Работапойдетгораздопродуктивней, еслинаучитьсявкаждом конкретномслучаенаходитьэлементсистемы, впервуюочередьреагирующийнаданноевоздействие, азатемопределять, какприэтом изменяетсясостояниевсейсистемы. Дляэтогонужноуметь, во-первых, четкопредставитьсистемувцелом, во-вторых, разбитьеенаэлементыи, в-третьих, рассмотретьвзаимодействиемеждуэлементами.

Вот мы и подошли к понятиям, которые должны сыграть ключевую роль при освоении методики решения учебных (и не только учебных) задач. Это понятия системаи соответственно системныйанализ. Ввиду особой важности они заслуживают рассмотрения в специальной главе.

Глава 3. Системныйподход иегозначение



Скачать документ

Похожие документы:

  1. - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки) (7)

    Список учебников
    ... Леках, ВикторАронович. Больные вопросы современной онкологии и новые подходы в лечении онкологических заболеваний / Леках, ВикторАронович ... свое понимание процессов ... системном - ключе. Освещаются современное ... вклад врачей-физиологов в становление ...
  2. - естественные науки - физико-математические науки - химические науки - науки о земле (геодезические геофизические геологические и географические науки) (8)

    Список учебников
    ... Леках, ВикторАронович. Больные вопросы современной онкологии и новые подходы в лечении онкологических заболеваний / Леках, ВикторАронович ... свое понимание процессов ... системном - ключе. Освещаются современное ... вклад врачей-физиологов в становление ...
  3. Титул Вместо предисловия

    Книга
    ... сделает себе лекало, поскольку ... История в данном ключе ее понимания - это постоянное ... в 46 лет. Виктория Бенедиктсон. Шведская писательница ... . Таршис Иосиф Аронович, Мануильский Григорий ... Виллем Эйнтховен - физиолог, изобрел электрокардиограф. Хейке ...
  4. Титул Вместо предисловия

    Книга
    ... сделает себе лекало, поскольку ... История в данном ключе ее понимания - это постоянное ... в 46 лет. Виктория Бенедиктсон. Шведская писательница ... . Таршис Иосиф Аронович, Мануильский Григорий ... Виллем Эйнтховен - физиолог, изобрел электрокардиограф. Хейке ...
  5. Нюхтилин в – мельхиседек

    Книга
    ... сделает себе лекало, поскольку ... История в данном ключе ее понимания - это постоянное ... в 46 лет. Виктория Бенедиктсон. Шведская писательница ... . Таршис Иосиф Аронович, Мануильский Григорий ... Виллем Эйнтховен - физиолог, изобрел электрокардиограф. Хейке ...

Другие похожие документы..