textarchive.ru

Главная > Список учебников


48

49

к станции, производство тепла в организме отчетливо снижается, хотя в обоих случаях кондуктор подвергался одинаково интенсив­ному охлаждению, а все физические условия отдачи тепла не меня­лись (А. Д. Слоним).

Благодаря динамической организации регуляторных механиз­мов функциональные системы обеспечивают исключительную ус­тойчивость метаболических реакций организма, как в состоянии покоя, так и в состоянии его повышенной активности в среде оби­тания.

Глава 3

ФИЗИОЛОГИЯ ВЕГЕТАТИВНОЙ

НЕРВНОЙ СИСТЕМЫ

Вегетативная (автономная) нервная система (ВНС) - это часть нервной системы (НС), регулирующая работу внутренних органов, просвет сосудов, обмен веществ и энергии. Функцией ВНС является поддержание постоянства внутренней среды, приспо­собление ее к изменяющимся условиям окружающей среды и дея­тельности организма.

Влияния ВНС на организм обычно не находятся под непо­средственным контролем сознания.

Регуляция функций внутренних органов ВНС может осуще­ствляться, хотя и менее совершенно, при полном нарушении связи с ЦНС. Объясняется это тем, что эффекторный нейрон ВНС находится за пределами ЦНС: либо в экстра-, либо в интраорган-ных вегетативных ганглиях. В соматической НС (в эфферентной ее части) все нейроны находятся в ЦНС, аксоны мотонейронов под­ходят непосредственно к эффекторным мышечным клеткам без пе­рерыва.

3.1. СИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

А. Локализация преганглионарных и ганглионарных ней­ронов и иннервируемые ими органы. В отличие от парасимпати­ческих нервов, которые выходят из различных отделов ЦНС, все симпатические нервы выходят из спинного мозга (нейроны распо­ложены в боковых рогах, сегменты С8~Ц - центр Якобсона) и ин-нервируют все органы и ткани организма, включая ЦНС и сенсор­ные рецепторы (рис. 3.1).

50

Б. Медиаторы и рецепторы.

1. Преганглионарные нейроны и рецепторы ганглионарных нейронов. Эфферентный вход в вегетативном ганглии (экстра- и интраорганный) представлен возбуждающим холинергическим преганглионарным волокном, образующим синапс с ганглионарным нейроном с помощью Н-холинорецептора (медиатор - ацетилхо-лин). Рецептор получил свое название (Д. Ленгли) из-за чувстви­тельности к никотину - малые его дозы возбуждают нейроны ганг-

51



лия, большие блокируют. В вегетативных ганглиях кроме ацетил-холина имеются различные нейропептиды; кроме Н- имеются М-холинорецепторы, вставочные адренергические клетки, регулиру­ющие возбудимость ганглионарных нейронов.

52


  1. От ганглионарных нейронов отходят постганглионар-ные симпатические волокна, в окончаниях которых главным медиатором является норадреналин - около 90% (адреналин -около 7%, дофамин - около 3%). В ответ на раздражение симпати­ческого нерва вместе с норадреналином выделяются также белок хромагринин, дофамин-Ь-гидроксилаза,мет-энкефалин. Поэто­му принцип Дейла - «один нейрон - один медиатор» - требует кор­рекции.

  2. Инактивация медиатора. 75-80% выделившегося в синап-тическую щель норадреналина захватывается обратно пресинапти-ческой мембраной и поступает в пузырьки, часть медиатора разру­шается ферментами, часть - диффундирует в интерстиций и кровь.

  3. Эффекторныерецепторы. Выделившийся из симпатических окончаний норадреналин действует на а- и р- постсинаптические адренорецепторы, являющиеся гликопротеидами (рис. 3.2). Это деление рецепторов основано на чувствительности их к различным фармакологическим препаратам. Оба типа рецепторов делятся на два подтипа: а2- и а2-, р^ и Р2-адренорецепторы. В большинстве ор­ганов, реагирующих на катехоламины, содержатся а- и р-адрено-рецепторы, причем одна гладкомышечная клетка может иметь оба

рецептора: а(- и Р^ рецепторы преимущественно иннервированы, а2- и Р2- рецепторы преимущественно не иннервированы.

В. Эффекты активации а- и $-адренорецепторов в разных органах различны, поэтому данный вопрос рассматривается в соот­ветствующих главах учебника.

Г. Механизм действия катехоламинов на эффекторные органы. Во всех видах адренорецепторов катехоламины вза­имодействуют посредством С-белка. При этом возникают электрофизиологические процессы (деполяризация или гиперпо­ляризация в результате активации ионотропных рецепторов) и биохимические (метаболические) процессы вследствие действия медиатора на метаботропные рецепторы. В случае деполяризации наблюдается усиление функции органа (например, усиление сокра­щений сердца), при гиперполяризации - угнетение (например, уг­нетение сокращений кишки). При активации метаботропных рецеп­торов возникают метаболические сдвиги с помощью вторых посредников (биохимическое действие медиатора). Более 80 типов рецепторов связаны с ионными каналами или ферментами посред­ством О-белка.

Д. Чувствительность эффекторных клеток к медиато­ру может понижаться (десенситизация) или повышаться (сен-ситизация).

53


В составе симпатических стволов обнаружены серотонинер-гические нервные волокна, оказывающие сильное стимулирующее влияние на моторику желудочно-кишечного тракта (рис. 3.3).

3.2. МОЗГОВОЙ СЛОЙ НАДПОЧЕЧНИКОВ -

СОСТАВНАЯ ЧАСТЬ СИМПАТОАДРЕНАЛОВОЙ

СИСТЕМЫ

Мозговой слой надпочечников представляет собой видоизме­ненный симпатический ганглий его клетки, с онтогенетичес­кой точки зрения, гомологичны ганглионарным адренергическим нейронам. Они содержат включения, окрашивающиеся в желто-ко­ричневый цвет двухромовокислым калием, что и послужило пово­дом назвать их хромаффинными клетками. В виде скоплений хро-маффинные клетки встречаются также на поверхности аорты, в области каротидного синуса, среди клеток симпатических гангли­ев. Преганглионарные волокна образуют на этих клетках, как и на хромаффинных клетках надпочечников, возбуждающие холинер-гические синапсы. Выделение катехоламинов из мозгового веще­ства надпочечников регулируется исключительно нервными влия­ниями (перерезка преганглионарных симпатических волокон прекращает секрецию катехоламинов). При возбуждении преганг­лионарных симпатических волокон у человека из надпочечников в кровоток обычно выбрасывается смесь катехоламинов, состоящая из адреналина (80-90%) и норадреналина (10-20%). Точки при­ложения для продуцируемых надпочечниками катехоламинов те же, что и у симпатической нервной системы, однако их действие более выражено, нежели симпатических нервов в областях со сла­бой адренергической иннервацией (в циркулярных и продольных мышцах кишечника, крупных артериях, матке). Взаимодействие катехоламинов с адренорецепторами вызывает различные эффекты в разных органах, в частности, торможение деятель­ности желудочно-кишечного тракта, улучшение процесса переда­чи в нервно-мышечных синапсах, увеличение силы сокращений ске­летных мышц, частоты и силы сокращений сердца, расширение бронхов. Все это имеет важное приспособительное значение, обес­печивая мобилизацию систем организма при физическом и эмоци­ональном напряжениях.

Катехоламины усиливают высвобождение свободных жирных кислот из подкожной жировой ткани и образование из гликогена глюкозы, необходимой клеткам организма при напряжении. Кате­холамины мозгового слоя надпочечников можно рассматривать как метаболические гормоны.

Симпатоадреналовая система активирует деятельность организма, мобилизует его защитные силы, обеспечивает вы­ход крови из кровяных депо, поступление в кровь глюкозы, фер-

ментов, усиливает метаболизм тканей, увеличивает расход энер­гии, ее возбуждение является пусковым звеном стрессорных эмоционально окрашенных реакций.

3.3. ПАРАСИМПАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

А. Иннервируемые органы и локализация преганглионар­ных и ганглионарных нейронов. Парасимпатические нервные волокна (см. рис. 3.1) имеются в составе черепных нервов (III пара -мезенцефальный отдел, VII, IX и X пары - бульбарный отдел) и в тазовом нерве - сакральный отдел спинного мозга (З^БЛ- Пара­симпатические волокна III пары (глазодвигательный нерв) иннер-вируют глазные мышцы (т. зрЫпсхег рирШае и т. сШапз), регули­руя диаметр зрачка и степень аккомодации. Парасимпатические веточки VII пары (лицевой нерв): п. ре1гози5 тарг - секреторный нерв, иннервирует слизистую оболочку носа, неба, слезную желе­зу; п. сЬогаа гутраш - смешанный нерв, содержит чувствитель­ные и секреторные волокна подчелюстной и подъязычной слюн­ных желез. Парасимпатические секреторные волокна IX пары (языкоглоточный нерв) подходят к околоушной железе в составе п. аипсиЫептрогаНз - от третьей ветви тройничного нерва. X пара (блуждающий нерв) своими ветвями снабжает дыхательные орга­ны, большую часть пищеварительного тракта (до нисходящей ободочной кишки), сердце, печень, поджелудочную железу, почки. Парасимпатические нервы сакрального отдела спинного мозга (52_54) иннервируют нисходящую часть ободочной кишки и тазо­вые органы (прямую кишку, мочевой пузырь, половые органы). Парасимпатической иннервации не имеют: скелетные мышцы, матка, мозг, подавляющее большинство кровеносных сосудов (кожи, органов брюшной полости, мышц), органы чувств и мозго­вое вещество надпочечников.

Б. Парасимпатические ганглии и отдельные нейроны распо­ложены внутри органов, а в тазовой области и в области головы - в "непосредственной близости от органов. От нервных клеток пара­симпатических ганглиев идут короткие постганглионарные пара­симпатические волокна, иннервирующие все перечисленные орга­ны; преганглионарные волокна обычно длинные (у симпатической нервной системы, наоборот, преганглионарные - короткие, пост­ганглионарные - длинные).

В. Медиаторы и рецепторы.

1. Передача возбуждения с преганглионарного парасимпа­тического волокна на эффекторный нейрон осуществляется, как

54

55

и у симпатического отдела ВНС, с помощью ацетилхолина. Медиа­тор действует на Н-холинорецептор постсинаптической мембраны ганглионарного нейрона.

  1. Постганглионарное волокно свое влияние на эффекторную клетку передает также с помощью ацетилхолина. Ацетилхолин синтезируется в цитоплазме окончаний холинергических нейро­нов, депонируется в везикулах - по нескольку тысяч молекул в каж­дой из них.

  2. Инактивация медиатора. Выделившийся в синаптическую щель ацетилхолин, как и в любом другом синапсе, не весь исполь­зуется для передачи сигнала. Причем, в отличие от симпатической нервной системы, основная часть ацетилхолина разрушается фер­ментом ацетилхолинэстеразой с образованием холина и уксусной кислоты, которые захватываются пресинаптической мембраной и вновь используются для синтеза ацетилхолина. Значительно мень­шая часть медиатора диффундирует в интерстиций и кровь. Обрат­ного захвата нерасщепленного ацетилхолина нервными окончани­ями не происходит.

  3. Эффекторные рецепторы. На клетки-эффекторы ацетилхо­лин действует с помощью М-холинорецепторов (см. рис. 3.2), которые свое название получили от мускарина - токсина мухомо­ра, активирующего эти рецепторы и вызывающего такой же эффект, как и ацетилхолин.

Г. Связь постганглионарных парасимпатических окон­чаний с М-холинорецепторами более тесная, нежели у симпа­тических окончаний. Короткие постганглионарные волокна холи­нергических нейронов мало ветвятся и образуют типичные синапсы с клетками-эффекторами. Однако имеются и неиннервированные постсинаптические М-холинорецепторы, например в кровеносных сосудах.

Д. Возбуждение парасимпатической НС (активация эффек-торных М-холинорецепторов) приводит к различным эффектам в разных органах, которые будут рассмотрены в соответствующих главах учебника.

Е. Механизм действия ацетилхолина на органы-эффек­торы. Стимулирующее влияние ацетилхолина на орган осуще­ствляется, во-первых, при помощи изменения характера электро­физиологических процессов - вызова возбуждения его клеток посредством активации ионотропных рецепторов №-каналов; во-вторых, посредством биохимических реакций с помощью вторых посредников: инозитол-три-фосфата, Са2+ при действии медиатора на метаботропные рецепторы. Тормозный эффект ацетилхоли­на возникает также в результате изменения характера электрофи-

56

зиологических процессов (активации ионотропных рецепторов К-каналов и гиперполяризации клеток эффектора). При этом с помо­щью метаботропных рецепторов активируется система вторых по­средников - гуанилатциклаза-циклическии гуанозинмонофосфат (ГЦ-цГМФ), обладающий анаболическим эффектом (биохимиче­ское действие медиатора).

3.4. ИНТРАОРГАННАЯ НЕРВНАЯ СИСТЕМА И ТКАНЕВЫЕ РЕЦЕПТОРЫ

А. Общая характеристика.

1. Внутренние органы после экстраорганной денервации -перерезки симпатических и парасимпатических нервов -продолжают функционировать. Вначале наблюдаются некото­рые дистрофические явления, которые затем исчезают. Через несколько недель чувствительность внутренних органов к биоло­гически активным веществам, и в первую очередь к медиаторам, повышается, их функция улучшается. Многие внутренние органы продолжают функционировать, будучи изолированными, находясь в физиологическом растворе: сокращаются перфузируемое серд­це, мочеточники, желчный пузырь, кишечник. Причем, в пищева­рительном тракте после перерезки симпатических и парасимпа­тических путей сохраняются все виды двигательной активности: перистальтика, ритмическая сегментация, маятникообразные хвижения, продолжается всасывание. Двигательная активность пищеварительных органов после перерезки их нервов регулиру­ется рефлекторными дугами, замыкающимися в пределах мышеч­ного и подслизистого сплетений его стенок, а также в экстраор­ганных ганглиях. Возбуждение афферентных нейронов кишечной стенки под действием пищевого комка приводит к возникнове­нию рефлексов, при которых пищевой комок продвигается в каудальном направлении путем сокращения мускулатуры ораль­ного участка кишки и одновременного расслабления каудального участка. Дуги этих двух рефлексов, обусловливающих перис­тальтику, лежат в пределах стенки кишечника. Тормозные нейроны этих дуг не являются ни холинергическими, ни адренергическими, возможно, их медиатором служит АТФ. Возбуждающие нейроны выделяют ацетилхолин, имеются осно­вания полагать, что их действие может быть опосредовано и другими медиаторами, например серотонином. Имеются спон­танно активные эфферентные нейроны, на них могут конвергиро­вать интра- и экстраорганные нервные волокна.

57


  1. Интраорганная нервная система содержит все элементы рефлекторной дуги: афферентный, вставочный и эффекторный нейроны. Чувствительные интрамуральные нейроны - это клетки Догеля II типа, они образуют первое звено - рецептор и второе -афферентный путь рефлекторной дуги. Показано наличие механо-, хемо- и термочувствительных клеток. Обнаружены быстро и мед­ленно адаптирующиеся тонические нейроны, возбуждающие и тормозящие сокращения кишки.

  2. На одну и ту же клетку интрамуральных ганглиев кон­вергируют межганглионарные (вставочные) и экстраорганные - постганглионарные симпатические и преганглионарные пара­симпатические волокна. Парасимпатические преганглионарные волокна образуют синапсы на возбуждающих и, по-видимому, тормозящих нейронах. Симпатические постганглионарные волок­на оказывают непосредственное тормозное влияние на гладкую мышцу кишки, а также тормозят холинергические ганглионарные нейроны, угнетают выделение медиатора из пресинаптических окончаний преганглионарных парасимпатических волокон. Мест­ные рефлекторные дуги выявлены и в сердце (Г. И. Косицкий и сотр.). Плотность расположения интраорганных нейронов весьма высока - в кишечнике, например, приходится около 20 тыс. нейрсг-нов на 1 см2. В целом в кишке число нейронов (1.-108) превосходит таковое в спинном мозге.

Б. В интраорганной нервной системе богат набор меди­аторов и соответствующих рецепторов. Только в энтераль-ной ее части функционирует около 20 различных медиаторов и мо­дуляторов. Наиболее изученные: ацетилхолин, катехоламины, серотонин, ГАМК, пептиды, АТФ.

3.5. ВЗАИМОДЕЙСТВИЕ МЕЖДУ ОТДЕЛАМИ ВИС И РЕГУЛЯЦИЯ ФУНКЦИЙ СИНАПСОВ

Синергизм и противоположные влияния. Большинство внутренних органов получают и симпатическую, и парасимпатиче­скую иннервацию. Влияния этих двух отделов ВНС обычно разно­направленны - это основа взаимодействия. Так, раздражение сим­патических нервов ведет к снижению двигательной активности кишечника, расслаблению желчного пузыря и бронхов, сокраще­нию сфинктеров желудочно-кишечного тракта, усилению сердеч­ной деятельности. Стимуляция же парасимпатического (блуждаю­щего) нерва вызывает противоположные эффекты: угнетение сердечной деятельности, усиление сокращений желудочно-кишеч-

58

59


ного тракта, желчного пузыря и бронхов, расслабление сфинкте­ров желудочно-кишечного тракта. В естественных условиях дея­тельность всех этих органов зависит от преобладания симпатиче­ских или парасимпатических влияний. В то же время в большинстве случаев оба отдела ВНС действуют синергично, так как они обеспе­чивают получение для организма полезного приспособительного ре­зультата. Эта функциональная синергия хорошо видна на примере регуляции функций сердечно-сосудистой системы. Так, в случае по­вышения артериального давления возбуждение барорецепторов рефлекторно приводит к снижению артериального давления. Этот эффект обусловлен как увеличением активности парасимпатиче­ских сердечных волокон, угнетающих деятельность сердца, так и снижением активности симпатических волокон, что ведет к расши­рению кровеносных сосудов. Особенно ярко проявляется синергизм при физической нагрузке - деятельность сердца стимулируется, а желудочно-кишечного тракта, напротив, угнетается, что увеличи­вает возможность достижения, например, спортивного результата. Механизм взаимодействия между отделами ВНС и регуляция фун­кционирования синапсов показаны на рис. 3.4.

3.6. ЦЕНТРЫ И АФФЕРЕНТЫ ВЕГЕТАТИВНОЙ НЕРВНОЙ СИСТЕМЫ

А. Центры ВНС. Функции ядер спинного мозга и ствола моз­га, от нейронов которых выходят вегетативные нервы (преганглио-нарные симпатические и парасимпатические волокна), контроли­руются вегетативными центрами, расположенными в различных отделах головного мозга: 1) продолговатый мозг; 2) задний мозг (мост и мозжечок); 3) средний мозг - серое вещество водопровода; 4) промежуточный мозг - гипоталамус; 5) конечный мозг - базаль-ные ганглии, кора большого мозга, лимбическая система, ретику­лярная формация. Кора большого мозга (особенно премоторная зона) получает афферентные импульсы от всех внутренних орга­нов и с помощью ВНС оказывает влияние на эти органы (двусто­ронняя кортико-висцеральная связь). Особое значение для вегета­тивной регуляции имеет гипоталамическая область: ее структуры предопределяют качество вегетативного обеспечения той или иной конкретной соматической деятельности организма, приводя режи­мы работы вегетативных эффекторов, параметры обмена веществ в соответствие с текущими потребностями организма.

Б. Афферентные волокна ВНС. Вегетативные реакции мо* гут быть вызваны раздражением как экстеро-, так и интерорецеп-торов. Но легче всего они вызываются раздражением собственных рецепторов органа. Афферентные пути от внутренних органов идут в ЦНС в составе вегетативных (симпатических и парасимпатиче­ских) и соматических нервов.

  1. В составе блуждающего нерва содержится до 90% аффе­рентных волокон (группы А, В и С), подавляющее большинство которых - тонкие безмякотные С-волокна, тела нейронов этих во­локон находятся в узловатом ганглии.

  2. В тазовом нерве афферентные волокна составляют 50%.

  3. В составе симпатических стволов также имеются А-, В- и С-афферентные волокна, в совокупности они составляют 50% от всего количества волокон.

  4. Рецептивные поля внутренних органов снабжены также чувствительными волокнами, являющимися отростками аф­ферентных нейронов межпозвоночных спинальных ганглиев и гомологичных им черепных узлов.

В. Сенсорные рецепторы афферентов ВНС воспринимают различные изменения внутренней среды.

1. Механорецепторы воспринимают давление (например, в артериях, в мочевом пузыре), реагируют на растяжение стенок органов.

  1. Хеморецепторы воспринимают изменения рН, электролит­ного состава содержимого внутренних органов, напряжения 02 и С02, концентрации глюкозы и аминокислот, осмотического давле­ния.

  2. Терморецепторы реагируют на изменения температуры, рас­полагаются в основном в желудочно-кишечном тракте.

  3. Болевые рецепторы реагируют на ноцицептивные воздей­ствия. Наличие специализированных болевых рецепторов лишь до­пускается; предполагается, что болевые ощущения возникают при чрезмерном раздражении любых висцерорецепторов.

  4. Полимодальные рецепторы (желудочно-кишечного тракта) одновременно реагируют на несколько воздействий.

Афферентная импульсация от перечисленных рецепторов по вышеназванным афферентам поступает в ЦНС, где формируются реакции согласно потребностям организма.

Определенную роль в деятельности ВНС играет афферентная импульсация от так называемых «биологически активных то­чек» человека. Их насчитывают до 700. По некоторым данным, раз­дражение этих точек (акупунктура, пальцевой точечный массаж) может вызвать изменение работы тех или иных внутренних орга­нов, снять головную боль, боль в области сердца и т. д. Свойства «биологически активных точек», их физиологическая роль актив­но изучаются.

3.7. ДУГА ВЕГЕТАТИВНОГО РЕФЛЕКСА

Отличительные особенности.

  1. Главное отличие рефлекторной дуги ВНС от таковой сома­тической нервной системы заключается в том, что она может за­мыкаться вне ЦНС. Эффекторный нейрон для симпатического отдела нервной системы расположен экстраорганно - в превертеб-ральных ганглиях, а для, парасимпатического, как правило, внутри органа или в непосредственной близости от него. Это означает, что вегетативные рефлексы могут быть не только центральными, как соматические рефлексы, но и периферическими - экстра- и интра-органными. '

  2. Дуга центрального вегетативного рефлекса включает как минимум четыре нейрона: чувствительный, промежуточный, преганглионарный и нейрон ганглия. Аксон преганглионарного ней­рона из ЦНС идет к экстра- или интраорганному ганглию, где кон­тактирует с ганглионарным нейроном, от которого постганглионар-ный безмиелиновый аксон идет к эффекторной клетке или



Скачать документ

Похожие документы:

  1. Физиология физического воспитания и спорта

    Документ
    ... подготовки Каюмова Е.А.___________________ «____»______________2008 г. П Р О Г Р А М М А Д И С Ц И П Л И Н Ы Физиологияфизическоговоспитания и спорта 033100 «Физическая культура» Специализация 033106 «Спортивная подготовка» ...
  2. Методические рекомендации к занятиям по курсам «анатомия» «физиология» «физиология физического воспитания и спорта»

    Методические рекомендации
    ... КУРСА ФИЗИОЛОГИЯФИЗИЧЕСКОЙ КУЛЬТУРЫ И СПОРТА Выписка из государственного образовательного стандарта ПП.Ф.04 Физиологияфизическоговоспитания и спорта. Физиология мышечного ...
  3. Физическое воспитание и спорт в высших учебных заведениях интеграция в европейское образовательное пространство

    Документ
    ... кафедр физическоговоспитания и спорта в кафедры физкультурного образования. С этих позиций задачи физическоговоспитания в ... физиология, биохимия и др.), биомеханики, метрологии. Изучение педагогики, психологии, теории и методики физическоговоспитания ...
  4. О повышении роли физической культуры и спорта в развитии личности студентов материалы докладов конференции

    Доклад
    ... . 2009. № 1. С.79-86. Смирнов В.М., Дубровский В.И. Физиологияфизическоговоспитания и спорта. М., 2002. С. 524-528 (605 с.). Хрипкова ...
  5. Департамента физической культуры и спорта города Москвы

    Отчет
    ... ,2009. Смирнов В.М., Дубровский В.И. Физиологияфизическоговоспитания и спорта: Учебник. -М.: Владос-Пресс, 2002 ... Гигиенические основы физической культуры и спорта Основная: 1. Вайнбаум Я.С. Гигиена физическоговоспитания и спорта: Учеб. пособ ...

Другие похожие документы..