textarchive.ru

Главная > Документ


Статистика значений фона и вершины импульсов (50 циклов).

Массивы и условия обработки

Фон

Сигнал

Сред. отсчет

Дисперсия

Сред. отсчет

Дисперсия

Основной входной массив N

Дополнительный входной массив М

Массив Z, счет Dm по несглаженному М

Массив Z, счет Dm по сглаженному М

Массив N, сглаженный весовым окном

9.96

9,89

9,87

9,84

11,5

9.97

9,49

5,47

4,76

17,9

50,1

50,2

49,7

49,9

48,5

52,0

47,4

22,3

18,6

29,2

Результаты моделирования подтверждают преимущество СРД перед простыми методами сглаживания. В числовой форме это наглядно проявляется в снижении дисперсии отсчетов выходного массива Z при практическом сохранении средних значений массива N и для фоновых отсчетов, и для амплитудных значений сигнала. При простом сглаживании "развал" фронтов сигнала (подавление высокочастотных составляющих спектра сигнала), как и должно быть при использовании низкочастотных фильтров, вызывает снижение по отношению к исходному массиву средних значений в максимумах и повышение фоновых значений сигнала, которое тем больше, чем больше окно весовой функции. Этот эффект особенно отчетливо проявляется в интервале окна фильтра по обе стороны от резких изменений сигнала.

При отсутствии дополнительных массивов М, коррелированных с регуляризируемым массивом N, формирование прогнозных значений Мi может производиться по ближайшим окрестностям текущих значений Ni в скользящем окне Ks. При строго корректном подходе текущая точка Ni не должна включаться в число счета прогнозных значений Mi, но, как показало моделирование, это практически не влияет на результаты регуляризации. При прогнозировании Mi по всем точкам окна Ks массив М формируется любым методом сглаживания из массива N, и все особенности работы СРД по сглаженным массивам М, рассмотренные выше, остаются без изменений при условии счета значений Dm в окне Кс по массиву М. Для исключения выбросов по обе стороны от скачков полезного сигнала счет Dm как дисперсии прогнозных значений Mi необходимо выполнять непосредственно по массиву N.

Фундаментальной особенностью СРД является возможность последовательной многократной фильтрации данных, при которой может осуществляться преимущественное повышение степени регуляризации данных с минимальными искажениями формы полезного сигнала. Для выполнения последнего размер окна Кс счета xi и Dm устанавливается минимальным (3-5 точек), а глубина регуляризации данных (степень подавления шумов) устанавливается количеством последовательных операций фильтрации (до 3-5 проходов). Пример регуляризации модельного массива N в три прохода приведен на рис. 11.3.7.

Рис. 11.3.7. СРД одиночного массива N (3 прохода. Счет Dm по массиву n)

Для сравнения пунктиром на рисунке приведено сглаживание массива 5-ти точечным фильтром Лапласа-Гаусса, который имеет коэффициент подавления шумов, эквивалентный 3-х проходному СРД (см. рис. 11.3.9).

На рисунках 11.3.8 и 11.3.9 приведены результаты статистической обработки 3-х проходной СРД для 25 циклов моделирования в сравнении с 1-м проходом и с 5-ти точечным фильтром Лапласа-Гаусса (кривая n5).

Рис. 11.3.8. Статистика средних значений Рис. 11.3.9. Статистика дисперсий

(25 циклов. Счет Dm по массиву n) (25 циклов. Счет Dm по массиву n)

Количество проходов может ограничиваться в автоматическом режиме, например, по среднеквадратическому значению корректирующих отсчетов zi = Ni - zi в каждом проходе по сравнению с предыдущим проходом, которое сначала резко уменьшается за счет сглаживания флюктуаций, а затем, в зависимости от динамики сигнальной функции, стабилизируется или даже начинает увеличиваться за счет искажения самого сигнала.

Частотное представление работы СРД хорошо видно на рис. 11.3.10, где приведены модули спектров рандомизированного сигнала в виде меандра (средние значения в минимуме - 20, в максимуме - 100, 25 периодов по 40 отсчетов, всего 1000 отсчетов) и результатов его обработки СРД (окно Кс= 3, окно Кs= 3).

Рис. 11.3.10. Модули спектров модельных сигналов. Рис.11.3.11. Участок спектра.

(1– входной массив N, 2– выходной массив Z, один цикл CРД,

3– выходной массив Z,три цикла CРД), 4 – массив нерандомизированного меандра).

Модуль спектра основного полезного сигнала (в данном случае чистого меандра) представляет собой последовательность отдельных частотных гармоник по всему диапазону спектра. В спектре рандомизированного меандра эти частотные гармоники суммируются со спектром шума, статистически равномерно распределенным по всему частотному диапазону (спектр шума на рисунке для наглядности сглажен). СРД осуществляет подавление шумовых составляющих сигнала, практически не затрагивая частотных гармоник меандра и не изменяя их по амплитуде. Последнее можно видеть на рис. 11.3.11, где представлен отрезок спектра сигналов в высокочастотной части главного диапазона в области одной гармоники меандра (частотные составляющие шума не сглажены). При 3-х цикловом СРД высокочастотные составляющие шумов подавляются практически на порядок.

Пример практического использования СРД приведен на рис. 11.3.12 при опробовании участка скважины, пересекающей пласты каменной соли, на содержание сильвинита по гамма-излучению Калия-40. По данным геологического опробования пласты сильвинита в толще вмещающих пород (галита) имеют достаточно резкие границы и однородны по содержанию сильвинита в пределах пластов. Исходная диаграмма ГК (детектор CsJ(Tl) со свинцовым фильтром толщиной 2 мм) и результаты фильтрации исходного массива данных ГК с использованием СРД и низкочастотного фильтра с весовым окном Лапласа-Гаусса приведены на рис. 11.3.12.

Рис. 11.3.12. Диаграммы ГК.

Результаты интерпретации диаграмм ГК симметричным деконволюционным цифровым фильтром (окно 13 точек) приведены на рис. 11.3.13. Как видно на рисунке, деконволюция по несглаженной диаграмме ГК дает существенные вариации содержания сильвинита в пределах пластов. Применение низкочастотной фильтрации диаграммы ГК снимает флюктуации содержания в пределах пластов, но существенно сглаживает границы пластов. Использование СРД позволяет устранить этот недостаток.

Рис. 11.3.13. Результаты интерпретации диаграмм ГК.

В заключение отметим, что СРД может использоваться для регуляризации не только ядернофизических данных, но и любых других числовых массивов непрерывных измерений, если радиус их корреляции не менее 3-5 отсчетов. В качестве примера на рис. 11.3.14 приведена диаграмма акустического каротажа, зарегистрированная с шагом дискретизации данных 20 см, сглаживание которой проведено СРД без потери пространственного разрешения.

Рис. 11.3.14. Диаграмма акустического каротажа и результат ее обработки СРД

(5 циклов, Kc = Ks = 3, физическое окно 0.6 м).

11.3. Статистическая группировка полезной информации.

Что касается аппаратных способов реализации СГПИ, то он может быть выполнен в реальном масштабе времени, если информация представлена потоком импульсов и основным информативным параметром является скорость следования импульсов.

Сущность аппаратной реализации заключается в статистической (близкой к статистической) нормированной выборке импульсов из дополнительного потока m и их суммировании с основным потоком n с заданием условий выборки по отношению частоты следования импульсов в потоках. Пола­гая для непрерывного режима измерений M+1 = М, перепишем выражение (5.2.20) с подстановкой значения  в следующем виде:

z = N + (M/-N)·M/(M+D(M)). (11.3.1)

Умножим левую и правую части выражения на нормировочный коэффициент размножения выходного потока K = l+R:

Z = K·z= N + RN+(M/-N)·KM/(M+D(M). (11.3.2)

Заменим отсчеты RN выборкой сигналов из потока m:

RN = РвМ, (11.3.3)

где Рв - вероятность выборки сигналов из потока m. Если вероятность выборки сигналов под­держивать равной значению

Pв = R/, (11.3.4)

то при этом будет иметь место

M/-N = РвM/R-N  0, (11.3.5)

и соответственно для выражения (11.3.2) имеем:

(M/-N)·KM/(M+D(M)  0, (11.3.6)

Z = N+PвM  N+RN. (11.3.7)

При статистической независимости величины х от частоты потоков n и m приведен­ные выражения действительны при определении значения как в целом по пространству измерений, так и для скользящих окон текущих значений по определенным интервалам предшествующих измерений. Действительно и обратное заключение: если по определенному интервалу измере­ний выражение (11.3.5) обращается в нуль, то установленная вероятность выборки соответствует условию (11.3.4). На этом принципе может проводиться аппаратная реализация СГПИ с авто­матической адаптацией к условиям измерений: управление процессом выборки импульсов из потока m и направление их на суммирование с потоком n по сигналам обратной связи с уст­ройства, следящего за обращением в нуль выражения (11.3.5).

Особенности аппаратной реализации СГПИ с автоматической адаптацией под условия измерений заключаются в следующем.

Значение вероятности выборки Рв не может быть больше 1. Отсюда из (11.3.3) следует, что для любых интервалов измерений должно выполняться условие М ≥ RN, а соответственно по всему пространству измерений должно выполняться условие ≥ R, чем и обуславливается выбор коэффициента R. Значение коэффициента R принципиально ограничивает степень положительного эффекта СГПИ (kmax  1+R), в отличие от СРД, где такого ограничения не имеется.

Относительная статистическая погрешность измерений выходного потока отсчетов Z соответ­ствует выражению (11.2.23) при условии постоянного значения величины Рв, т.е. при установке значения Рв по среднему значению величины в целом по пространству измерений. При автоматической адаптации под условия измерений значение вероятности Рв по текущему среднему значению отношения n/m определенного предшествующего интервала измерений также является статистически флюктуирующей величиной с дисперсией распределения (без учета изменений действительного значения х):

Dp = R2(n+m)n/(m3T), (11.3.8)

где Т- интервал усреднения информации при определении текущего значения . Соответственно, дисперсия и средняя квадратическая погрешность текущих отсчетов Z:

Dz = DN+ PвDM+M2Dp = N+РвМ+М2Dр, (11.3.9)

z2 = (N+РвМ+М2Dр)/(N+РвМ)2. (11.3.10)

При постоянной экспозиции измерений  положительный эффект возрастает с увеличением значения Т:

k = K2/(K+R2(n+m)/mT). (11.3.11)

kmax  1+R, z2  1/(N+РвМ) при Т  . (11.3.12)

В общем случае, с учетом средней квадратической ошибки прогнозирования xi значе­ний xi для текущих точек измерений по значениям в предшествующих интервалах при Т > :

Dz = N+РвМ+M2(Dp+Pв2 xi2). (11.3.13)

Формирование значения Рв на основе информации по средним значениям интер­валов измерений, предшествующих текущим, определяет СГПИ как динамическую систему с соответствующей постоянной времени реакции на изменение условий измерений. Учитывая, что, во-первых, для любой точки пространства измерений должно выполняться условие m > nR, и, во-вторых, увеличение интервала Т приводит к возрастанию времени реакции на из­менение условий измерений, значение Т целесообразно ограничивать величиной порядка (5-10) значений текущих экспозиций. Чем меньше пространственная частота рас­пределения х по отношению к распределению n, тем большее значение Т допустимо.

Реализация систем СГПИ значительно облегчается при чисто практическом ограниче­нии целевой задачи: получение максимального положительного эффекта в экстремально небла­гоприятных условиях производства измерений (при низких значениях регистрируемой плот­ности потока излучения, при высокой скорости измерений) с вырождением положительного эффекта по мере снижения статистической погрешности измерений в основном потоке. Так, например, если при скважинном гамма-опробовании статистическая погрешность измерений основного потока сигналов в зонах с повышенной интенсивностью излучения снижается до 2-3%, то ее дальнейшее уменьшение не имеет практического смысла, т.к. основная погрешность каротажной радиометрической аппаратуры обычно не превышает 5%.

Использование данного целевого ограничения позволяет применить формирование параметра Рв не в скользящем окне временного или пространственного усреднения информа­ции, а по определенному зарегистрированному объему предшествующей информации, т.е. с автоматической вариацией интервала усреднения информации и постоянной регулирования Pв в зависимости от частоты потоков сигналов, при этом объем информации формирования Pв может задаваться с учетом характера вариаций величины и допустимого значения ди­намической погрешности измерений.

Для реализации такой возможности преобразуем выражение (11.3.5) по интервалу усред­нения t к виду:

Pвmt/R-nt+Q = q, (11.3.14)

Pв = nR/m = q/, (11.3.15)

q  Q при t  ,

где Q- средний уровень смещения числового эквивалента сигнала обратной связи системы АРВ - автоматического регулирования вероятности выборки Рв, при котором обеспечивается вы­полнение равенства (11.3.15), - коэффициент пропорциональности преобразования цифрового сигнала АРВ в сигнал Рв. Дифференциальное уравнение для системы АРВ:

dq/dt = n-mq/R. (11.3.16)

Решение дифференциального уравнения при начальных условиях t = 0 и q = О (переходная функция АРВ):

q = R(n/m) [l-exp(-mt/R)]. (11.3.17)

Pв = R(n/m) [l- exp(-mt/R)] = R(n/m) [1- exp(-nt/q)]. (11.3.18)

Как видно из этих выражений, значение сигнала обратной связи АРВ пропорционально отношению (n/m) частот потоков, а постоянная времени АРВ R/m прямо пропорцио­нальна значению коэффициента преобразования  при обратной пропорциональности от зна­чения частоты дополнительного потока m, равно как и, с учетом (11.3.15), прямо пропорциональ­на текущему значению сигнала обратной связи q при обратной пропорциональности от зна­чения частоты основного потока n. Первое полностью эквивалентно второму при (n/m)  const и q = Rn/m  Q. В первом приближении, с использованием выражения (11.3.8) и экви­валентности значения статистических флюктуаций при Т≈2 для скользящего прямоугольного временного окна и окна интенсиметра с экспоненциальной переходной функцией, для отно­сительных флюктуации значения Рв получаем:

р2 = (n+m)/(2Rn)= (n+m)/(2qm). (11.3.19)

Выражение действительно для прямого измерения 2-интенсиметром отношения (n/m) и является максимальной оценкой. Для более точной оценки следует учитывать, что в данном случае интенсиметр является устройством с отрицательной обратной связью по цепи АРВ, что несколько уменьшает значение флюктуации. Точная оценка может быть проведена с использованием формулы Кэмпбелла для дисперсии случайной величины x(t), образованной сложением импульсов пуассоновского потока [5], раздельно для потока n при m = const и потока m при n = const, с последующим сложением квадратов относительного среднего квадратического значения флюктуации. Так, для схемы, приведенной ниже, получено значение р2 ≈ (R+1)m/(2nR2).

При выбранном для пространства измерений значении коэффициента R ≤ (m/n)min с использованием выражения (11.3.19) параметры системы АРВ (коэффициент  и среднее значе­ние Q для средней по пространству величины отношения n/m) могут устанавливаться под заданное значение допустимых флюктуаций вероятности выборки импульсов Рв:

 ≤ (l+(m/n)max)/(2Rp2). (11.3.20)

В процессе измерений АРВ осуществляет непрерывную адаптацию под текущие усло­вия измерений (nq, m  mR, Pв  q/) с регулированием текущего значения Pв по объему информации q = (n/m)R = n предшествующего интервала измерений путем соответ­ствующего изменения постоянной времени интегрирования этой информации в зависимости от изменения частот потоков сигналов. При n/m const последнее имеет абсолютный ха­рактер: р  const,   (l/n + l/m)/(2p2).

Следует отметить, что во многих методах геофизики существуют достаточно благоприятные условия использования как СГПИ, так и СРД. Так, например, применительно к скважинному гамма-опробованию с извлечением дополнительной информации из низкоэнергетической час­ти спектра излучения условия достаточно точной реакции на изменения параметра по стволу сква­жины являются весьма хорошими, т.к. основной фактор вариации значений x - эф­фективный атомный номер среды, изменяется в небольшом диапазоне с низкой простран­ственной частотой вариаций, причем в зонах расположения активных пород, где требуется наиболее высокая точность интерпретации результатов измерений и возможны значительные изменения атомного номера пород, за счет увеличения плотностей потоков излучения посто­янная времени АРВ будет существенно уменьшаться, а пространственная разрешающая спо­собность измерений соответственно увеличиваться. Аналогичные условия характерны, как пра­вило, и для других методов ядерной геофизики.

Пример исполнения системы СГПИ для двух импульсных потоков сигналов приведен на рис. 11.3.1. Функциональная схема СГПИ содержит реверсивный счетчик импульсов 1, на вход суммирования которого подаются импульсы основ­ного потока n, а на вход вычитания - импульсы дополнительного потока m, предварительно проходящие через схему выборки импульсов 3 и счетчик-делитель частоты следования импуль­сов 4 с коэффициентом пересчета R.

Рис. 11.3.1. Базовая функциональная схема СГПИ.

1- реверсивный счетчик импульсов, 2- блок формирования сигнала выборки импульсов, 3- схема выборки импульсов, 4- счетчик-делитель частоты на R, 5- блок суммирования потоков импульсов.

Информация о состоянии счетчика 1 (сигнал q) с выходов счетчика подается на блок формирования сигнала выборки импульсов 3. В простейшем случае этот блок может представлять собой пороговое устройство (по коду числа Q), открывающее схему 3, однако выборка в этом случае имеет характер, близкий к статистическому, только при достаточно малых различиях частоты потоков n и m/R (порядка n<m/R<1.5n). По мере роста отноше­ния m/n независимость выборки от импульсов потока n в такой схеме вырождается, и требу­ются дополнительные устройства адаптации под текущие условия измерений. В общем случае блок 3 выполняется в виде пересчетной схемы с регулируемым коэффициентом пе­ресчета импульсов потока m в интервале 0<Рв<1 по значению кода q с выхода счетчика 1 (например, с использованием статистических пересчетных схем, выполненных в виде генера­тора случайных кодов со схемой формирования сигнала выборки очередного импульса из по­тока m путем сравнения на больше-меньше текущих кодов с выхода счетчика 1 и с выхода генератора кодов).

Импульсы основного потока n и импульсы выборки из потока m, частота которых равна Рвm = R·n, поступают на вход блока 5 суммирования потоков сигналов. Интенсивность потока импульсов на выходе блока 5 равна z = n+Рвm = (1+R)n. Блок 5 может содержать пе­ресчетную схему с коэффициентом K=(1+R), при этом выходной поток будет приводиться к масштабу основного потока n и появляется возможность синхронного переключения коэффи­циентов пересчета схем 4 и 5 под различные условия измерений, при этом установка опти­мального значения коэффициента R может быть переведена в режим автоматической с управ­лением по текущему значению (в определенном интервале) информационного кода схемы 1. Альтернативное решение - подача на вход суммирования схемы 5 потока импульсов с выхода схемы 4, при этом частота потока z будет всегда в 2 раза больше потока n.

Попутно отметим, что при выводе информации q = R(n/m) в цифровом коде со счет­чика 1 данная схема может выполнять функции универсального цифрового интенсиметра: средней частоты импульсов (n-var, m-const от генератора тактовой частоты), среднего вре­менного интервала между импульсами (m-var, n-const) и отношения частот n/m двух статис­тически распределенных потоков импульсов.

Адаптивное управление сложными системами



Скачать документ

Похожие документы:

  1. Управление в широком смысле представляет собой воздействие на эволюцию (развитие во времени) того или иного процесса с целью придания ему желаемых свойств

    Документ
    ПРЕДМЕТ ТЕОРИИ УПРАВЛЕНИЯУправление в широкомсмыслепредставляетсобойвоздействиенаэволюцию (развитиевовремени) тогоилииногопроцесса с цельюприданияемужелаемыхсвойств. При этом процесс может относиться к различным явлениям окружающего ...
  2. Южная секция содействия развитию экономической науки ежегодник

    Документ
    ... илииной тенденции или модели экономического развития, ограниченность в пространстве и вовременитогоилииного набора инструментов экономической политики. Более того ...
  3. Тайм-менеджмент 110 статей 1 искусство планирования времени или жизнь без стресса

    Документ
    ... временитогоилииного курса, факультета, класса. Они отмечают, сколько времени тратится на лекции, на ожидание лекций, на ... смысл включает в себя опору на реальность; самодисциплина выражена в нормах и расписаниях; порядок представляетсобойпроцесс ...
  4. Широком смысле этого слова - информационная и компьютерная

    Автореферат диссертации
    ... здравым смыслом. Полагайтесь на вашу одежду, чтобы быть согретым, а не на огонь. Вовременных убежищах ... исполнению убеждение представляетсобой явную, иной раз и скрытую дискуссию, дополняемую неким стимулирующим воздействием. Каждый ...
  5. Основы духовной культуры

    Документ
    ... процесс вхождения человека во храм как начала его церковной жизни. В широкомсмысле ... к другу, метод воздействияна человека в целяхуправления его поведением, состоящий ... опоре на сенситивные периоды развития в усвоении тогоилииного предметного знания ...

Другие похожие документы..