textarchive.ru

Главная > Документ


11.3. Статистическая регуляризация данных.

Как следует из выражения (11.2.21), для практического использования информации из дополнительных потоков данных необходимо установить значения и диспер­сию D(M), причем, исходя из задания последней по выражению (11.2.11), должно быть известно значение x - относительной средней квадратической флюктуации вели­чины х.

Применительно к СРД определение значений и x по зарегистрированным мас­сивам данных не представляет затруднений как в целом по пространству измерений, так и в виде распределений в скользящем окне усреднения данных. Последнее эквивалентно приведе­нию Dxm => 0 для текущей точки обработки данных по информации ее ближайших окрестно­стей и позволяет производить максимальное извлечение полезной информации из дополни­тельных потоков сигналов, если частотный спектр распределения величины х по пространству измерений много меньше частотного спектра полезного сигнала. Отметим, что информация о распределении х также может иметь практическое значение (в частности, при гамма-опробовании с дополнительным потоком сигналов в низкоэнергетическом диапазоне спектра излучения - для оценки эффективного атомного номера горных пород).

Проверка теоретических положений метода АРД проводилась путем статистического моделирования соответствующих массивов данных и их обработки цифровыми фильтрами.

В таблице 1 приведены 4 группы результатов обработки по формулам (11.2.20-21) двух статистически независимых и постоянных по средним значениям массивов данных n и m (модели постоянных полей) при различных установках СРД по скользящему окну Кс счета текущих значений = mi/ni и Di(М) по массиву m. Текущая точка обработки данных – по центру окна. Количество отсчетов в каждом массиве – 1000, распределение значений отсчетов соответствует закону Пуассона. Определение прогнозных отсчетов Мi по массиву m для использования в уравнении (11.2.20) проводилось со сглаживанием отсчетов в скользящем окне Ks низкочастотного цифрового фильтра (вариант без сглаживания при Ks = 1). В качестве низкочастотного фильтра в алгоритме СРД используется (здесь и в дальнейшем) весовое окно Лапласа-Гаусса. Теоретическое значение Dz.т. дисперсии результатов z определялось по выражению (11.2.22) с расчетом дисперсии D(M) по выражению D(M) =[1+(1/(Kc)+1/(Kc))]. При сглаживании прогнозных отсчетов значение DM в выражении (11.2.22) принималось равным DM. = Hs, где Hs – коэффициент усиления сглаживающим фильтром дисперсии шумов (сумма квадратов коэффициентов цифрового фильтра). Дополнительно в таблице приводятся зарегистрированные средние значения коэффициента снижения статистических флюктуаций  = n2/z2.

Таблица 1. Статистика результатов моделирования СРД.

(Основной массив = 9.9, Dn = 9.7, дополнительный массив = 9.9, Dm = 9.9, 1000 отсчетов.)

Kc

Ks

z

Dz

Dz.т.

Kc

Ks

z

Dz

Dz.т.

3

1

9,7

5,7

6,19

1,7

11

3

9,6

3,6

3,80

2,8

5

1

9,7

5,4

5,78

1,8

11

5

9,6

3,3

3,55

3,0

11

1

9,6

5,1

5,36

1,9

11

11

9,6

3,1

3,22

3,2

21

1

9,6

5,0

5,18

2,0

11

21

9,6

3,0

3,11

3,3

51

1

9,6

5,0

5,05

2,0

11

51

9,6

3,0

2,99

3,3

3

3

9,7

4,1

4,71

2,4

3

11

9,8

4,5

4,26

2,2

5

5

9,7

3,6

4,01

2,8

5

11

9,7

3,5

3,78

2,8

11

11

9,6

3,1

3,22

3,2

11

11

9,6

3,1

3,22

3,2

21

21

9,6

2,9

2,91

3,4

21

11

9,6

3,1

3,12

3,2

51

51

9,6

2,7

2,66

3,7

51

11

9,6

3,1

2,99

3,2

Как видно из данных таблицы, практические результаты фильтрации достаточно хорошо совпадают с ожидаемыми по данным теоретических расчетов. Некоторое уменьшение среднего значения z по отношению к исходному среднему значению n определяется асимметричностью пуассоновского типа модели. При малых средних значениях модельных отсчетов в массиве m это приводит к определенной статистической асимметрии в работе СРД, т.к. при (+m)2 > (-m)2 среднестатистическое доверие к дополнительной информации с отсчетами Mi+ меньше, чем с отсчетами Mi-. Этим же фактором, по-видимому, вызвано и большее расхождение между теоретическими и фактическими значениями Dz при малых значениях окна Кс. Можно также заметить, что по значению коэффициента  фильтрация выходит на теоретические значения ( 1+MN) только при достаточно точном определении значений и Di(М), что требует увеличения окна Кс счета этих параметров для полного использования дополнительной информации.

Таблица 2.

Эффект использования дополнительной информации, в полном соответствии с выражением (11.2.22), усиливается при предварительном сглаживании статистических вариаций отсчетов Mi и при увеличении значений отсчетов дополнительного массива (материалы по последнему случаю не приводятся, т.к. не имеют какой-либо дополнительной информации). В спокойных по динамике полях еще большая глубина регуляризации может быть достигнута при счете значений и Dm по сглаженному массиву М, что позволяет повысить вес прогнозных отсчетов Mi. Результаты моделирования данного варианта в тех же условиях, что и для таблицы 1, приведены в таблице 2. Такой же эффект, в принципе, может достигаться и непосредственным введением дополнительного коэффициента веса в выражение (11.2.20) в качестве множителя для значения D(M), что позволяет осуществлять внешнее управление глубиной регуляризации.

Оценка сохранения разрешающей способности полезной информации была проведена на фильтрации детерминированных сигналов n и m предельной формы – в виде прямоугольных импульсов. Оценивались два фактора: сохранение формы полезного сигнала и подавление статистических шумов, наложенных на полезный сигнал.

При установке СРД без усреднения данных по массиву М (Кs = 1, прогноз Мi по текущим значениям массива М) при любых значениях окна Кс выходной массив Z без всяких изменений повторяет массив N, т.е. не изменяет полезный сигнал и полностью сохраняет его частотные характеристики. Естественно, при условии, что массив М пропорционален массиву N.

При Кs > 1 форма выходных кривых несколько изменяется и приведена на рис. 11.3.1. В индексах выходных кривых z приведена информация по установкам окон СРД: первая цифра - окно счета дисперсии DM и текущего значения (в количестве точек отсчетов), вторая цифра (через флеш) - окно сглаживания отсчетов М весовой функцией Лапласа-Гаусса и определения прогнозных отсчетов Мi. Для сравнения с результатами типовой низкочастотной фильтрации на рисунке приведена кривая n25 отсчетов N, сглаженных весовой функцией Лапласа-Гаусса с окном 25 точек.

Рис. 11.3.1. СРД прямоугольного импульса. Счет Dm по несглаженному массиву М.

На рис. 11.3.1а приведен результат СРД прямоугольного импульса с амплитудным значением 10 на фоне 5 при отношении m/n = 1 (равные значения отсчетов N и М). Дисперсия DN в выражении (11.2.21) принималась равной значению отсчетов N (статистика Пуассона). Как видно на рисунке, при сохранении фронтов сигнальной функции сглаживание прогнозных значений Мi приводит к появлению искажения формы сигнала по обеим сторонам скачка, интервал которого тем больше, чем больше значение Ks. Амплитудное значение искажений, как это и следует из выражения (11.2.21), в первую очередь зависит от соотношения текущих значений DN и D(M) и в меньшей степени от глубины сглаживания прогнозных отсчетов.

Максимальную величину искажения для точек скачка в первом приближении можно оценить из следующих соображений. Значения D(M) между точками скачка равны D(M) = А2/4, где А - амплитуда скачка, при этом значения коэффициента  для нижней и верхней точек скачка определяются выражениями   А2/(4DN+A2), где DN = N точки скачка (для статистики Пуассона). Отсюда, при прогнозном значении М  N+А/2 для нижней точки скачка и M  N-A/2 для верхней точки относительная величина изменений N определится выражением   1/(2N/A+A), т.е. будет тем меньше, чем больше значения А и N и больше отношение N/A, что можно наглядно видеть на рис. 11.3.1в. Из этого выражения также следует, что максимальные искажения скачков, вносимые системой СРД, будут всегда в несколько раз меньше, чем статистические флюктуации непосредственных отсчетов  = 1/на краях скачков.

При увеличении глубины регуляризации введением счета дисперсии D(M) по сглаженному массиву М картина искажений несколько изменяется и приведена на рис. 11.3.2. Реакция СРД на сглаживание дисперсии D(M) проявляется в своеобразной компенсации абсолютных отклонений отсчетов непосредственно по сторонам скачка отклонениями противоположного знака в более дальней зоне от скачка. Максимальные значения искажений остаются примерно на таком же уровне, как и для работы по несглаженной дисперсии D(M), с несколько меньшей зависимостью от увеличения значений N и А.

Рис. 11.3.2. СРД прямоугольного импульса. Счет Dm по сглаженному массиву М.

В приведенных примерах значение окна счета Кс принималось равным значению окна сглаживания Кs дополнительного массива М. При Кс > Ks картина процесса практически не изменяется. При обратном соотношении размеров окон вступает в действие второй фактор - отклонение от фактических значений счета текущих значений xi = m/n в малом окне Кс по массиву отсчетов, сглаженных с большим окном Ks. На расстояниях от скачка функции, больших Кс/2, СРД переходит в режим предпочтения сглаженных значений массива М, т.к. D(M)  0, что при Кс < Ks может приводить к появлению существенной погрешности – выбросов на расстояниях  Кс/2 от скачков. Естественно, что при практических измерениях таких условий наблюдаться не будет и эффект резко уменьшится, но для полного его исключения вариант Kc  Ks можно считать предпочтительным.

Рис. 11.3.3. СРД сигнала N по массиву M. Рис. 11.3.4. Коэффициент .

(Счет Dm по несглаженному массиву М). (Среднее статистическое по 50 циклам)

На рис. 11.3.3 приведен пример регистрации рандомизированного модельного сигнала в виде прямоугольного импульса амплитудой 40 на фоне 10, на котором виден принцип работы СРД. Как и следовало ожидать, СРД производит сглаживание статистических флюктуаций фона и сигнала за пределами зоны Кс от скачка, отдавая предпочтение сглаженным прогнозным значениям Мi, и не изменяет значения фона и сигнала в пределах этой зоны в связи с резким возрастанием текущих значений D(M) в выражении (11.3.21). Изменение коэффициента  в зоне скачка, управляющего формированием выходных отсчетов, приведено на рис. 11.3.4 (среднестатистическое по 50-ти циклам рандомизации для модельного импульса на рис. 11.3.3) и наглядно показывает принцип адаптации СРД к динамике изменения значений обрабатываемых сигналов.

Статистическая оценка регуляризации данных по прямоугольным импульсам проводилась по 50-ти циклам рандомизации исходных массивов N и M. В качестве примера на рисунках 11.3.5 и 6 приведены результаты обработки статистики массивов N и Z. Кроме статистики циклов рандомизации проводилась суммарная обработка всех циклов по общей статистике фона и вершины импульсов. Результаты обработки для тех же установок фильтров приведены в таблице 3.

Рис. 11.3.5. Статистика сигнала N Рис. 11.3.6. Статистика сигнала Z

(Измерения по 50-ти циклам). (50 циклов. Счет Dm по несглаженному М)

Таблица 3.



Скачать документ

Похожие документы:

  1. Управление в широком смысле представляет собой воздействие на эволюцию (развитие во времени) того или иного процесса с целью придания ему желаемых свойств

    Документ
    ПРЕДМЕТ ТЕОРИИ УПРАВЛЕНИЯУправление в широкомсмыслепредставляетсобойвоздействиенаэволюцию (развитиевовремени) тогоилииногопроцесса с цельюприданияемужелаемыхсвойств. При этом процесс может относиться к различным явлениям окружающего ...
  2. Южная секция содействия развитию экономической науки ежегодник

    Документ
    ... илииной тенденции или модели экономического развития, ограниченность в пространстве и вовременитогоилииного набора инструментов экономической политики. Более того ...
  3. Тайм-менеджмент 110 статей 1 искусство планирования времени или жизнь без стресса

    Документ
    ... временитогоилииного курса, факультета, класса. Они отмечают, сколько времени тратится на лекции, на ожидание лекций, на ... смысл включает в себя опору на реальность; самодисциплина выражена в нормах и расписаниях; порядок представляетсобойпроцесс ...
  4. Широком смысле этого слова - информационная и компьютерная

    Автореферат диссертации
    ... здравым смыслом. Полагайтесь на вашу одежду, чтобы быть согретым, а не на огонь. Вовременных убежищах ... исполнению убеждение представляетсобой явную, иной раз и скрытую дискуссию, дополняемую неким стимулирующим воздействием. Каждый ...
  5. Основы духовной культуры

    Документ
    ... процесс вхождения человека во храм как начала его церковной жизни. В широкомсмысле ... к другу, метод воздействияна человека в целяхуправления его поведением, состоящий ... опоре на сенситивные периоды развития в усвоении тогоилииного предметного знания ...

Другие похожие документы..