textarchive.ru

Главная > Литература


Содержание

Введение_______________________________________________3

Глава I. Системы счисления

1.1. Исторические вопросы возникновения чисел и систем счисления

1.2.Позиционные и непозиционные системы счисления

1.3. Запись целых неотрицательных чисел и алгоритмы действий над ними

Глава II. Психолого-педагогические основы введения систем счисления

2.1. Психологические основы введения систем счисления в начальной школе.

2.2. Развитие познавательного интереса при обучении математики.

Глава 3. Методика и технология введения систем счисления в начальной школе

3.1. Введение элементов систем счисления в начальной школе

3.2 Преемственность в изучении систем счисления в

математики и информатики в начальной школе

3.3. Методика ознакомления младших школьников с нумерацией многозначных чисел и системой счисления

3.4. Технологическая схема введения понятия числа

Заключение

Литература

Приложения

Введение

В настоящее время, когда весь мир вступает в эпоху математизации научного знания, в эпоху широкого применения ЭВТ, математике отводится ответственная роль в развитии и становлении активной, самостоятельно мыслящей личности, готовой конструктивно и творчески решать возникающие перед обществом задачи. Именно математика вносит большой вклад в развитие логического мышления детей, воспитание таких важных качеств научного мышления, как критичность и обобщенность, формирует логически обоснованную гипотезу и т.д. математика воспитывает и такие качества ума и речи, как точность, четкость и ясность.

Цели начального обучения математике и содержания курса определяют основные особенности его изучения. Так, решение главной задачи начального курса математики – формирование прочных вычислительных навыков проводится в тесной взаимосвязи с развитием математического мышления детей, их познавательной самостоятельности. В процессе формирования вычислительных навыков решение тренировочных примеров дополняется заданиями логического, познавательного характера, нацеливающими детей на проведение наблюдений, сравнений, анализа рассматриваемых математических выражений и примеров, что ведет к установлению причинно-следственных связей и закономерностей, способствует осознанию практической значимости операций сравнения и анализа.

Человеку очень часто приходится иметь дело с числами, поэтому нужно уметь правильно называть и записывать любое число, производить действие над числами. Как правило, мы успешно справляемся с этим. Помогает здесь способ записи чисел, который в настоящее время используется повсеместно и носит название десятичной системы счисления.

Изучение этой системы начинается в начальных классах, и, конечно, учителю нужны определенные знания в этой области. Он должен знать различные способы записи чисел, алгоритмы арифметических действий и их обоснование. Понятие числа возникло в глубокой древности. Тогда же и возникло необходимость в названии и записи чисел. Язык для наименования, записи и выполнения действий над ними называют системой счисления.

Успешность изучения математики и формирования прочных вычислительных навыков зависит от качества усвоения детьми арифметических действий в пределах 1000, нумерация чисел за пределами 1000 имеет свои особенности: многозначные числа образуются, называются, записываются с опорой не только на понятие разряда, но и на понятие класса. Необходимо раскрыть это важнейшее понятие нашей системы счисления.

Актуальность проблемы заключается в том, что выработка осознанных и прочных навыков письменных вычисленных явлений одной из основных задач изучения систем счисления.

Объектом исследования является процесс обучения математике младших школьников.

Предметом исследования является методика ознакомления младших школьников с системой счисления.

Проблема нашей работы состоит в том, что десятичная система счисления изучается на уроках математики, а другие системы счисления рассматриваются на уроках информатики. В связи с этим, цель нашего исследования – показать необходимость использования систем счисления в курсе математики начальной школы, их роль в развитии математического мышления младших школьников.

В соответствии с целью, в данной работе поставлены следующие задачи:

1. Изучить психолого-педагогическую и методическую литературу по поставленной проблеме.

2. Раскрыть теоретические основы систем счисления.

3. Разработать методы и приемы ознакомления младших школьников с системами счисления.

В ходе исследования применялись такие методы:

1. Теоретический анализ психолого-педагогической и методической литературы.

2. Обобщение передового опыта учителей.

3. Беседа с учителями по проблеме исследования.

4. Использование средств ознакомления на практике с целью выявления их эффективности.

Исследовательская работа проводилась в три этапа:

I этап – ознакомление с психолого-педагогической литературой, обоснование темы;

II этап – опытно-экспериментальная работа в школе;

III этап – обобщение результатов исследования, определение плана и содержания данной работы, который состоит из введения, трех глав, заключения, списка использованной литературы и приложения.

Теоретическая значимость работы заключается в том, что в ней раскрыты понятия и содержание работы по ознакомлению младших школьников с системами счисления.

Практическая значимость исследования состоит в том, что в ней показана методика работы по ознакомлению младших школьников с системами счисления, которая может использоваться как опытными, так и начинающими учителями.

Глава I. Исторические вопросы возникновения чисел и системы счисления.

    1. Исторические вопросы возникновения чисел

Покупатель, приходя в магазин, видит товары самой разной стоимости: есть очень дешевые, есть непомерно дорогие. Чтобы упростить расчеты при покупке, Центральный Банк выпускает денежные знаки различного достоинства. Когда фотограф или аптекарь для приготовления нужного ему раствора взвешивает порошки, он использует специальные аптекарские весы и набор гирек разной массы. Точно так же из базовых элементов, или ключевых чисел, строится любая числовая система.

Если при взвешивании порошка аптекарь положил на чашу весов две гирьки по 50г, одну гирьку в 2г, то вес порошка составил 2х50г+1х5г+1х2г=107г. Но и сама запись числа 107 связана со специальной числовой базой, а именно 1,10,100,… Так, цифра 1 задает число сотен, о – число десятков, 7 – число единиц. Элементы числовой базы, или ключевые числа, в данном случае представляют собой степени десяти: 1=100, 10=101, 100=102, 1000=103 и т.д. В десятичной системе всего десять цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Говорят, что эти цифры представляют собой коэффициенты разложения заданного числа по степеням 10, а само число 10 называют основанием системы счисления. «Вес» цифры в десятичной записи числа определяется позицией: чем дальше отстоит данная позиция от крайнего правого ряда единиц, тем большую солидность и «вес» она имеет. Поэтому принятая система записи чисел называется десятичной позиционной системой счисления. Сейчас десятичная система счисления применяется почти повсеместно. Но и теперь есть еще племена, которые довольствуются при счете пальцами одной руки. У них система счета оказалась пятеричной. В странах, где люди ходили босиком, по пальцам легко было считать до 20, поэтому довольно большое распространение получила двадцатеричная система счисления. Самым серьезным соперником десятеричной системы оказалась двенадцатеричная. Вместо десятков применяли при счете дюжины, то есть группы из 12 предметов. Во многих странах даже теперь некоторые товары, например, ножи, вилки, ложки продают дюжинами. В столовой сервиз, как правила, входит 12 тарелок, 12 чашек, 12 блюдец. Победа над всеми соперницами объясняется тем, что у человека на каждой руке по 5 пальцев. Было бы их по шесть, считали бы мы не десятками, а дюжинами. А если бы у нас, как у лошадей, на руках и ногах были копыта, то арифметика была бы такой же, как у папуасов, - мы считали бы парами. Но странные повороты делает история! Именно двоичная система счисления счета оказалась самой полезной для современной техники, на основе двоичной арифметики работают современные ЭВМ.

Различные способы счета и нумерации

Долгое время после того, как появились названия чисел, люди их не записывали. Причина для этого была самая уважительная – они не умели писать. Поэтому, если кому-нибудь надо было переслать другому человеку сведения, где участвовали числа, прибегали к зарубкам на дереве или на кости, к узелкам на веревках, рисункам на мягкой глине и т.д. такие знаки уже нельзя было перекладывать с места на место, убирать одни и добавлять другие. Вместо этого приходилось думать, мысленно выполнять операции над знаками.

Но все же это еще не была настоящая арифметика. Знаки на глине обозначали не числа, а предметы – головы скота, мешки с зерном, кувшины масла. Их приходилось изображать столько же, сколько было предметов. С этим еще можно было мириться. Пока учет велся в пределах одного хозяйства, одной деревни. Но когда возникли государства, старые методы обозначения стали негодными. Для записи больших чисел уже нельзя было обойтись ни зарубками на бирках, ни узелками, ни глиняными фигурками.

И вот примерно 5 тысяч лет тому назад было сделано замечательное открытие. Люди догадались, что можно обозначать знаком не одну голову скота, а сразу десять или сто голов, не один мешок зерна. А сразу 6 или 60 мешков.

Например, египтяне обозначали десяток знаком (единицу они обозначало просто вертикальной черточкой , как это делаем и мы), десять десятков, то есть сотню – знаком .Появились знаки для тысячи - (цветок лотоса), десятка тысяч - (поднятый кверху палец), ста тысяч (сидящая лягушка) и миллиона (человек с поднятыми руками).

Чтобы написать какое-нибудь число, египетский писец бесхитростно писал столько раз знак j, сколько в этом числе тысяч, затем столько раз, сколько в оставшейся части сотен и т.д. запись. Показанная на таблице, означала, что в числе 2 тысячи, 3 сотни, 6 десятков и 7 единиц.

Писать много раз один и тот же знак, разумеется, весьма неудобно. Более экономичной является позиционная система записи чисел, где имеет значение не только начертание цифры, но и ее позиция, положение среди других цифр. Позиционная является современная система записи чисел, которую мы изучаем в школе. В позиционной системе счисления один и тот же знак может означать различные числа в зависимости от места (позиции) занимаемого этим знаком в записи числа. Например, в числе 18 цифра 8 означает 8 единиц, в числе 82 – 8 десятков или 8/0 единиц, а в числе 875 – 8 сотен или 800 единиц. Шестидесятеричная вавилонская и десятичная системы счисления являются позиционными.

Непозиционные системы характеризуются тем, что каждый знак (из совокупности знаков, принятых в данной системе для обозначения чисел) всегда обозначает одно и то же число, независимо от места (позиции), занимаемого этим знаком в записи числа. Примером такой системы может служить римская система, возникшая в середине века.

Интересны были различные методы обозначения чисел, придуманные египтянами и вавилонянами, греками и римлянами. Но у всех этих методов был один недостаток: по мере увеличения чисел нужны были все новые и новые знаки. Один из величайших древнегреческих математиков Архимед научился называть громадные числа, но обозначать он их не умел. Не хватало ему самой малости. Архимед, один из гениальнейших математиков в истории человечества, не додумался до … нуля!

Знакомясь в первом классе с числом 0, вряд ли кто-нибудь себе представлял, что это одно из величайших изобретений в математике. Только после того, как люди научились обозначать пропущенные разряды в позиционной записи чисел, они получили в руки могучее орудие познания природы. Без нуля не было бы современной математики, не было бы таких достижений человеческого разума, как вычислительные машины и космические корабли.

Впервые нуль был придуман вавилонянами примерно две тысячи лет тому назад. Но они применяли его лишь для обозначения пропущенных разрядов в середине числа. Писать нули в конце записи числа они не догадались.

В Индии примерно полторы тысячи лет тому назад нуль был присоединен к девяти цифрам и появилась возможность обозначать этими десятью цифрами любое число, как бы оно велико ни было. И самое главное, запись таких гигантских чисел стала довольно короткой. Приведу название некоторых больших чисел с указанием числа нулей после единицы.

Название класса

Число нулей

Запись числа

Степень

Тысяча

3

1 000

103

Миллион

6

1 000 000

106

Миллиард (биллион)

9

1 000 000 000

109

Триллион

12

1 000 000 000 000

1012

Квадриллион

15

1 000 000 000 000 000

1015

Квинтиллион

18

1000 000 000 000 000 000

1018

Индийской системой обозначений мы пользуемся до сих пор. Это не значит, что индийские цифры имели с самого начала современный вид. В течение многих столетий, переходя от народа к народу, они много раз изменялись, пока приняли современную форму. Арабы заимствовали у индийцев цифры и позиционную десятичную систему записи чисел. Европейцы, в свою очередь, узнали ее от арабов. Поэтому наши цифры в отличие от римских, стали называться арабскими. Правильнее было бы называть их индийскими. Они употребляются в нашей стране, начиная примерно с XVII века.

Обычно вопросы исторического характера рассматриваются как некоторая необязательная, дополнительная часть курса и выносятся во внеклассную работу. В учебнике математики Л.Г. Петерсон во II классе подробно рассматривается материал, связанный с историей развития понятия числа. Дети должны в сжатой, сокращенной форме пройти и «пережить» весь тот исторический путь, который прошло человечество от операций с конкретными множествами предметов к числам и операциям над ними. Основные этапы этого пути отражены в учебнике И.Я. Депмана, Н.Я. Виленкина «За страницами учебника математики».

    1. Введение элементов систем счисления в начальной школе.

Содержание учебного предмета, как известно, зависит от многих факторов – от требований жизни к знаниям учащихся, от уровня соответствующих наук, от психических и физических возрастных возможностей детей и т.д. Правильный учет этих факторов является существенным условием наиболее эффективного обучения школьников, расширения их познавательных возможностей. Но иногда это условие по тем или иным причинам не соблюдается. В этом случае преподавание не дает должного эффекта как в отношении усвоения детьми круга необходимых знаний, так в отношении развития их интеллекта.

Представляется, что в настоящее время программы преподавания некоторых учебных предметов, в частности математики, не соответствуют новым требованием жизни, уровню развития современных наук (например, математики) и новым данным возрастной психологии и логики. Это обстоятельство диктует необходимость всесторонней теоретической и экспериментальной проверки возможных проектов нового содержания учебных предметов.

Фундамент математических знаний закладывается в начальной школе. Но, к сожалению, как сами математики, так и методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики.

Рассмотрим характерные особенности государственного стандарта по математике в начальной школе. Основным ее содержанием являются целые числа и действия над ними, изучаемые в определенной последовательности. Вначале изучаются четыре действия в пределе 10 и 20, затем – устные вычисления в пределе 100, устные и письменные вычисления в пределе 1000 и, наконец, в пределе миллионов и миллиардов. В IV классе изучаются некоторые зависимости между данными и результатами арифметических действий, а также простейшие дроби. Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии – вычерчивание прямоугольника и квадрата, измерение отрезков, площадей прямоугольника и квадрата, вычисление объемов.

Полученные знания и навыки ученики должны применять к решению задач и к выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий – для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действий, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза. С I по IV класс дети решают следующие основные типы задач (простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям, на вычисление среднего арифметического и некоторые другие виды задач.

С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно – учащиеся приступают к задачам после и по мере изучения чисел; главное, что требуется при решении – это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами. Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которой более «сложные» ситуации были бы связаны и с более «глубокими» пластами количественных отношений. Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета (возрастает число действий), по рангу чисел (от десяти до миллиарда), по сложности физических зависимостей (от задач на распределение до задач на движение) и по другим параметрам. Только один параметр – углубление в систему собственно математических закономерностей – в них проявляется слабо, неотчетливо. Поэтому очень сложно установить критерий математической трудности той или иной задачи. Почему задачи на нахождение неизвестного по двум разностям и на выяснение среднего арифметического (III класс) труднее задач на разностное и краткое сравнение (II класс)? Методика не дает на этот вопрос убедительного и логичного ответа.

Таким образом, учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приемы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.

Общеизвестно, что современная математика (в частности, алгебра) изучает такие моменты количественных отношений, которые не имеют числовой оболочки. Также хорошо известно, что некоторые количественные отношения вполне выразимы без чисел и до чисел, например, в отрезках, объемах и т. д. (отношение «больше», «меньше», «равно»). Изложение исходных общематематических понятий в современных руководствах осуществляется в такой символике, которая не предполагает обязательного выражения объектов числами. Так, в книге Е.Г. Гонина «Теоретическая арифметика» основные математические объекты с самого начала обозначаются буквами и особыми знаками [15, 12-15]. Характерно, что те или иные виды чисел и числовые зависимости приводятся лишь как примеры, иллюстрации свойств множеств, а не как их единственно возможная и единственно существующая форма выражения. Далее, примечательно, что многие иллюстрации отдельных математических определений даются в графической форме, через соотношение отрезков, площадей [15, 14-19]. Все основные свойства множеств и величин можно вывести и обосновать без привлечения числовых систем; более того, последние сами получают обоснование на основе общематематических понятий.

В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приемах оперирования ими. Правда, есть тенденция относить эти представления к категории «доматематических образований» (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако это не меняет существенной их функции в общей ориентировке ребенка в свойствах вещей. И порой случается, что глубина этих якобы «доматематических образований» более существенна для развития собственно математического мышления ребенка, чем знание тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что акад. А.Н. Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: «В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной» [24,17].

В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по ее конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех своих конкретных вариантах она, как представляется, должна удовлетворять следующим основным требованиям:

  • преодолевать существующий разрыв между содержанием математики в начальной и средней школе;

  • давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел, как особой формы выражения количества, должны стать специальным, но не основным разделом программы;

  • прививать детям приемы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин ( связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);

  • решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников и других подсобных (в частности, электронных) средств.



Скачать документ

Похожие документы:

  1. Системы счисления (3)

    Документ
    ... системысчисления является римская система, которой мы чаще всего пользуемся для нумерации (века, глав ... книги и пр.) В римской системесчисления в качестве цифр используются ...
  2. Системы счисления и их применение

    Литература
    ... 2.1.Уравновешенная системасчисления (Глава 1. Числа и комбинаторика § 1.1. Позиционные системысчисления. С. 6 – 8 из [3]). Рассмотрим обычную троичную систему счисления. Заменив ...
  3. Системы счисления и их применение

    Литература
    ... 2.1.Уравновешенная системасчисления (Глава 1. Числа и комбинаторика § 1.1. Позиционные системысчисления. С. 6 – 8 из [3]). Рассмотрим обычную троичную систему счисления. Заменив ...
  4. Позиционные системы счисления

    Документ
    ... специальных преимуществ перед другими системамисчисления. Позиционные системысчисления В позиционных системахсчисления величина, обозначаемая цифрой в ... сентября» №9, 2001. Фомин С. В. Системысчисления. - М.: Наука. Глав. ред. физ.-мат. лит., 1987 ...
  5. Непозиционные системы счисления

    Документ
    ... и глав в книгах. Алфавитные системысчисления. Более совершенными непозиционными системамисчисления были алфавитные системы. К числу таких систем счисления ...

Другие похожие документы..