textarchive.ru

Главная > Книга

1

Смотреть полностью

БИБЛИОГРАФИЯ = Фогель Ф., Мотульски А. Генетика человека: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1990. – 378 с.

Фогель Ф., Мотульски А. Генетика человека: В 3-х т. Т. 2: Пер. с англ. – М.: Мир, 1990. – 378 с.

ЭЛЕКТРОННОЕ ОГЛАВЛЕНИЕ

1

Ф. ФОГЕЛЬ, А.МОТУЛЬСКИ

ГЕНЕТИКА

ЧЕЛОВЕКА

2

Действие генов

Мутации

Популяционная генетика

ИЗДАТЕЛЬСТВО «МИР»

2

F. Vogel, A. G. Motulsky

Human Genetics

Problems and Approaches

Second, Completely Revised Edition

With 447 Figures and 217 Tables

Ф. ФОГЕЛЬ

А.МОТУЛЬСКИ

Генетика

человека

Проблемы и подходы

В 3-х томах

том 2

Перевод с английского

канд. биол. наук А. Г. Имашевой,

канд. биол. наук С.Л. Мехедова,

Е. Я. Тетушкина

под редакцией

д-ра биол. наук Ю. П. Алтухова

и д-ра биол. наук В. М. Гиндилиса

ББК 28.04

Ф74

УДК 575

Фогель Ф., Мотульски А.

74 Генетика человека: В 3-х т. Т. 2: Пер. с англ.-М.: Мир,
1990. - 378 с, ил.

ISBN 5-03-000286-3

Книга двух известных генетиков из ФРГ и США является фундаментальным учебником по генетике человека, охватывающим практически все основные направления этой области науки. Она может служить как учебным пособием для начинающих изучать генетику человека, так и справочным изданием для специалистов.

В т. 2 рассматриваются механизм действия гена, мутации, популяционная генетика человека.

Для генетиков, молекулярных биологов, антропологов, врачей, а также для студентов-медиков и биологов.

1908000000-015

Ф--------------------- 106-89ББК 28.04

041(01) 90

Редакция литературы по биологии

BN 5-03-000288-Х (русск.)

BN 5-03-000286-3

BN 3-540-16411-1 (англ.)

© Springer- Verlag Berlin, Heidelberg 1979, 1982,

1986

All Rights Reserved.

Authorized translation from English language

edition published by Springer-Verlag Berlin

Heidelbere New York Tokyo

4. Действие генов

4.1. Развитие менделевской парадигмы

Разработка концепций, предложенных Гальтоном и Менделем, приблизила нас к пониманию механизма действия генов. Обсуждение близнецового метода выявило не только его возможности, но и ограничения, связанные с тем, что в этом случае анализ основан на сравнении фенотипов без изучения действия отдельных генов. Близнецовый метод по существу сводится к измерению и количественному сравнению варьирующих признаков у близких родственников. Важно помнить, что оценки наследуемости только указывают на присущую данной популяции генетическую изменчивость, но не позволяют делать выводы о ее причинах. Подобного рода оценки ставят вопросы, но ответа на них не дают.

Напротив, подход Менделя оказался плодотворным для выяснения того, какие генетические факторы и каким образом определяют конкретный фенотип. Шаг за шагом исследователи шли к разрешению этой загадки (разд. 3.6).

Можно сказать, что первый шаг в этом направлении сделал А. Гэррод. Он разработал концепцию врожденных нарушений метаболизма (разд. 3.6). Позже было показано, что гены определяют структуру белков и многие распространенные наследственные болезни связаны именно с дефектами ферментов. Введение в практику исследований методов анализа белков позволило выявлять изменчивость на уровне аминокислотных последовательностей, а после того как в 1953 г. Уотсон и Крик раскрыли структуру ДНК [1347], и был расшифрован генетический код, стало ясно, что различия в аминокислотных последовательностях объясняются заменами нуклеотидов в ДНК. Механизмы регуляции действия генов у высших организмов до сих пор не установлены, остается также открытым вопрос о том, каким образом активность различных генов регулируется и интегрируется в процессе развития и при функционировании организма как целого. Достаточно подробно разработаны и экспериментально обоснованы модели генной регуляции у бактерий. Оказалось однако, что эти модели гораздо хуже объясняют регуляцию генов у высших организмов. Известно, что эукариоты существенно отличаются от бактерий по сложности организации. Неудивительно поэтому, что сложившиеся в ходе эволюции механизмы, обеспечивающие генную регуляцию про- и эукариот, тоже различны.

Практические аспекты генетики человека. Многие наследственные болезни человека можно удовлетворительно объяснить различиями в действии отдельных генов. Другую группу явлений, так называемые мультифакториальные заболевания, тоже в какой-то степени можно понять в рамках действия отдельных генов (разд. 3.7). Еще один большой класс составляют синдромы, обусловленные численными или структурными хромосомными аберрациями. Их объяснить в терминах действия отдельных генов невозможно. Понять механизм этой группы заболеваний - наиболее сложная проблема генетики человека.

Изучение нормальных вариантов и аномалий, развитие которых контролируется отдельными генами, очень полезно для всестороннего анализа нормальных функций. С другой стороны, раскрытие механизма взаимосвязи генотипа и фенотипа при синдромах, обусловленных хромосомными аберрациями, позволит углубить наши представления о генетической регуляции нормального эмбрионального развития. Как уже упоминалось в разд.3.6.1, гене-

6 4. Действие генов

Таблица 4.1. Этиология и патогенез наследственных заболеваний по данным биохимических и молекулярно-биологических исследований (по [203] с изменениями)

Уровень анализа

Тип нарушения

Пример

Нарушения структуры ДНК

1. Делеции

α-Талассемия, гемоглобины Лепоре, гемофилия (разд. 4.3.4.)

2. Единичные нуклеотидные замены

Серповидноклеточная анемия (разд. 4.3.2)

3. Мутации, нарушающие сплайсинг

Некоторые виды β-талассемии (разд. 4.3.4)

4. Нонсенс-мутации

Некоторые виды β-талассемии (разд. 4.3.4, 4.3.5)

5. Мутации сдвига рамки считывания

Гемоглобин Уэйна (разд. 4.3.3)

6. Дупликации генов

Гемоглобин Грэди (разд. 4.3)

7. Регуляторные мутации (см. разд. 5.1.4)

Некоторые виды Р-талассемии

Нарушение функции ферментов

1. Полное отсутствие активности

а) белок обнаруживается иммунологически

Некоторые варианты синдрома Леша—Найхана (разд. 4.2.2.6)

б) белок иммунологически не обнаруживается

Большинство вариантов синдрома Леша—Найхана, варианты гомоцистинурии (разд. 4.2.2.9)

2. Уменьшение активности

а) уменьшено сродство к субстратам

Недостаточность по G6PD (Фрайбург) (разд. 4.2.2.2)

б) уменьшено сродство к кофакторам

Гомоцистинурия (пиридоксин-зависимый тип) (разд. 4.2.2.9)

в) нестабильные структуры

Некоторые варианты недостаточности по G6PD (разд. 4.2.2.2)

3. Увеличение активности

Вариант G6PD Гектона (разд. 4.2.2.2)

4. Нарушение белка, активирующего фермент

Вариант АВ ганглиозидоза GM2 [203]

5. Уменьшение количества кофакторов

Пиридоксин(витамин В6)- зависимость (разд. 5.2.2.5)

Нарушения функции неферментных белков

1. Нарушение посттрансляционной модификации

Недостаточность α-1-антитрипсина, вариант ZZ (разд. 3.7.4)

2. Усиление способности к агрегации

Серповидноклеточная анемия (разд. 4.3.2)

3. Нарушение связывания с рецептором

Семейная гиперхолестеринемия (разд. 4.6.4); тестикулярная феминизация (разд. 4.7.5)

Нарушение функций клеток и органов

1. Изменение метаболических путей

а) накопление токсичного предшественника (катаболический путь)

Фенилкетонурия (разд. 4.2.2.7), мукополисахаридозы и другие лизосомные болезни (разд. 4.2.2.3)

б) недостаток продукта (анаболический путь)

Различные виды гипотиреоза с образованием зоба (разд. 4.2.2.7)

в) избыток продукта (анаболический путь)

Редкая форма подагры

4. Действие генов 7

Продолжение табл. 4.1

Уровень анализа

Тип нарушения

Пример

2. Нарушение регуляции путей биосинтеза по типу обратной связи

а) избыток конечного продукта вследствие уменьшения количества регулятора

Острая перемежающаяся порфирия (разд. 4.6.3), семейная гиперхолестеринемия (разд. 4.6.4)

3. Нарушения функции мембран

а) недостаточность трансмембранного транспорта

Цистинурия (см. [203], глава 80), наследственный сфероцитоз (разд. 4.6.5)

б) недостаточность рецептор-опосредованного эндоцитоза

Семейная гиперхолестеринемия, рецептор-негативный и рецептор-дефектный варианты (разд. 4.6.4)

в) недостаточность образования вторичных мессенджеров

Псевдогипопаратиреоз (см. [203], гл. 69)

4. Ненормальная внутриклеточная компартментализация

а) накопление непроцессированного белка

Недостаточность по α-1-антитрипсину, вариант ZZ (разд. 3.7.4)

б) ненормальная локализация белка

I-клеточная болезнь (разд. 4.2.2.3), семейная гиперхолестеринемия (вариант с нарушением интернализации (разд. 4.6.4)

5. Нарушение клеточной организации тканей

а) изменение формы клеток

Серповидноклеточная анемия (разд. 4.3.2), наследственный сфероцитоз (разд. 4.6.5)

б) изменение структуры органелл

Синдром неподвижности ресничек, в частности синдром Картагенера (см. [203], гл. 91)

в) изменение внеклеточного матрикса

Буллезный эпидермолиз типа Пасини (разд. 4.6.7), недостаточность лизилгидроксилаз (синдром Элерса—Данлоса, тип VI)

тический анализ можно проводить на разных уровнях. Для изучения наследственных дефектов использовали методы биохимии и молекулярной биологии. Подобные исследования помогли установить биологические механизмы, действующие на трех разных уровнях: на собственно генном (на уровне последовательности нуклеотидов), на уровне белкового продукта гена и отчасти на качественном фенотипическом уровне. В ходе этих исследований выявлены разнообразные функциональные нарушения и, кроме того, получено много фактов,

расширяющих наше представление о норме. В табл. 4.1 приводятся типы генетических дефектов и примеры наследственных заболеваний, при которых эти дефекты изучались. Некоторые заболевания [например, гемоглобинопатии (30670) и гемофилии (30690)] изучены на всех трех уровнях. Однако в большинстве других случаев механизмы, лежащие в основе патологических состояний, удалось установить только на уровне белкового продукта гена (второй уровень) или на уровне нарушения функции клетки или органа (третий уровень).

8 4. Действие генов

Дальнейшее изложение будет главным образом посвящено анализу действия гена на уровне белкового продукта, что позволяет идентифицировать нарушения на уровне транскрипции ДНК. Мы обсудим различные механизмы доминантного действия генов и вопросы генной регуляции. На всех уровнях будут рассмотрены области практического применения и теоретические аспекты медицинской диагностики.

4.2. Гены и ферменты

4.2.1. Гипотеза «один ген – один фермент»

Первые исследования. После того как в 1902 г. Гэррод указал на связь генетического дефекта при алкаптонурии с неспособностью организма расщеплять гомогентизиновую кислоту, важно было выяснить специфический механизм, лежащий в основе этого нарушения. Поскольку тогда уже было известно, что метаболические реакции катализируются ферментами, можно было предположить, что именно нарушение какого-то фермента приводит к алкаптонурии. Такая гипотеза обсуждалась Дришем (в 1896 г.). Ее высказывали также Холдейн (1920 г., см. [1117]) и Гэррод (1923 г. [1091]). Важными этапами в развитии биохимической генетики стали работы Кюхна и Бутенандта [1178; 1027] по изучению окраски глаз у мельничной огневки Ephestiakuhniellaи аналогичные исследования Бидла и Эфрусси на Drosophila(1936) [987]. В этих пионерских работах для выяснения механизмов действия генов были выбраны мутанты насекомых, изученные ранее генетическими методами. Однако такой подход не привел к успеху. Проблема оказалась слишком сложной, и чтобы решить ее, необходимо было:

1) подобрать простой модельный организм, удобный для экспериментального изучения;

2) искать генетическую основу биохимических признаков, а не биохимическую основу генетически детерминированных признаков. Оба условия были выполнены в работе Бидла и Татума в 1941 году [988] (см. также Бидл, 1945 [986]).

Модель Бидла и Татума. Статья этих исследователей начиналась так:

«С точки зрения физиологической генетики - развитие и функционирование организма может быть сведено к сложной системе химических реакций, которые каким-то образом контролируются генами. Вполне логично предположить, что эти гены... либо сами выступают в роли ферментов, либо определяют их специфичность. Известно, что генетики-физиологи обычно пытаются исследовать физиологические и биохимические основы уже известных наследственных признаков. Этот подход позволил установить, что многие биохимические реакции контролируются специфическими генами. Такие исследования показали, что ферменты и гены обладают специфичностью одного порядка. Однако возможности этого подхода ограниченны. Наиболее серьезное ограничение заключается в том, что при этом в поле зрения исследователей попадают наследственные признаки, не имеющие летального эффекта и, следовательно, связанные с реакциями, которые не очень существенны для жизнедеятельности организма. Второе затруднение ... заключается в том, что традиционный подход к проблеме подразумевает использование внешне проявляющихся признаков. Многие из них представляют собой морфологические вариации, основанные на системах биохимических реакций, настолько сложных, что их анализ необычайно затруднен.

Подобные соображения привели нас к следующему выводу. Изучение общей проблемы генетического контроля биохимических реакций, определяющих развитие и метаболизм, должно проводиться с помощью процедуры, противоположной общепринятой: вместо того чтобы пытаться выяснить химические основы известных наследственных признаков, необходимо установить, обеспечивают ли гены контроль известных биохимических реакций и как они это делают. Нейроспора, относящаяся к аскомицетам, обладает свойствами, позволяющими реализовать такой подход и одновременно служит удобным объектом для генетических исследований. Вот почему наша программа была построена на использовании именно этого организма. Мы исходили из того, что облучение рентгеном вызывает мутации в генах, контролирующих определенные химические реакции. Пусть для выживания в данной среде организм должен осуществлять какую-то химическую реакцию, тогда мутант, лишенный такой способности, в этих условиях окажется нежизнеспособным. Однако его можно поддерживать и изучать, если выращивать в среде, к которой добавлен жизненно необходимый продукт генетически блокированной реакции».

4 Действие генов 9

Рис. 4.1. Схема эксперимента по обнаружению биохимических мутантов нейроспоры На полноценной среде мутации, индуцированные рентгеновскими лучами или ультрафиолетом, не нарушают роста гриба. Однако на минимальной среде мутант не растет. При добавлении к минимальной среде витаминов способность к росту восстанавливается При внесении аминокислот роста нет На основании этих данных можно предположить, что мутация произошла в гене, который контролирует метаболизм витамина Следующий шаг заключается в идентификации витамина, способного восстановить нормальную функцию Генетический блок обнаружен среди реакций биосинтеза витамина [1303].

Далее Бидл и Татум приводят описание схемы эксперимента (рис. 4.1). В состав полной среды входил агар, неорганические соли, солодовый экстракт, дрожжевой экстракт и глюкоза. Минимальная среда содержала только агар, соли, биотин и источник углерода. Наиболее подробно были исследованы мутанты, которые росли на полной среде и не росли на минимальной. Чтобы установить соединение, синтез которого нарушен у каждого из мутантов, в минимальный агар вносили отдельные компоненты полной среды.

Таким способом были выделены штаммы, неспособные синтезировать определенные факторы роста: пиридоксин, тиамин и парааминобензойную кислоту. Было показано, что эти дефекты обусловлены мутациями в специфических локусах. Работа положила начало многочисленным исследованиям на нейроспоре, бактериях и дрожжах, в которых было установлено соответствие «генетических блоков», ответственных за отдельные метаболические этапы, и специфических нарушений ферментов. Этот подход очень быстро превратился в инструмент, позволяющий исследователям раскрывать метаболические пути.

Гипотеза «один ген - один фермент» получила прочное экспериментальное подтверждение. Как показали работы последующих десятилетий, она оказалась удивительно плодотворной. Анализ дефектных ферментов и их нормальных вариантов позволил вскоре выявить такой класс генетических нарушений, которые приводили к изменению функции фермента, хотя сам белок по-прежнему обнаруживался и сохранял иммунологические свойства. В других случаях менялся температурный оптимум активности фермента. Некоторые варианты можно было объяснить мутацией, влияющей на общий регуляторный механизм и изменяющей в результате активность целой группы ферментов. Подобные исследования привели к созданию концепции регуляции активности генов у бактерий, которая включала и концепцию оперона.

10 4. Действие генов

Первые примеры ферментативных нарушений у человека. Первым наследственным заболеванием человека, для которого удалось показать ферментативное нарушение, была метгемоглобинемия с рецессивным типом наследования (Гибсон и Харрисон, 1947 [1100]; Гибсон, 1948 [1099]) (25080). В этом случае поврежденным ферментом является NADH - зависимая метгемоглобин-редуктаза. Первая попытка систематического изучения группы заболеваний человека, связанных с дефектами метаболизма, была предпринята в 1951 году. При исследовании болезни накопления гликогена [1044] супруги Кори показали, что в восьми из десяти случаев патологического состояния, которое диагностировалось как болезнь Гирке (23220), структура гликогена печени представляла собой нормальный вариант, а в двух случаях была явно нарушена. Было также очевидно, что гликоген печени, накапливаясь в избытке, не может быть непосредственно превращен в сахар, поскольку у больных проявляется тенденция к гипогликемии. Для расщепления гликогена с образованием глюкозы в печени необходимы многие ферменты. Два из них-амило-1,6-глюкозидаза и глюкозо6-фосфатаза-были выбраны для изучения как возможные дефектные элементы ферментной системы. В гомогенатах печени при различных значениях рН было измерено освобождение фосфата из глюкозо-6фосфата. Результаты представлены на рис. 4.2. В нормальной печени обнаруживалась высокая активность с оптимумом при рН 6-7. Сильное нарушение функции печени при циррозе коррелировало с незначительным уменьшением активности. С другой стороны, в случае болезни Гирке с летальным исходом, активность фермента обнаружить вообще не удалось; такой же результат был получен при обследовании второго подобного больного. У двух пациентов с менее выраженными симптомами наблюдалось значительное уменьшение активности.

Было сделано заключение, что в указанных случаях болезни Гирке с летальным исходом имел место дефект глюкозо-6-фосфатазы. Однако в большинстве более легких случаев активность этого фермента оказалась не ниже, чем при циррозе печени, и только у двух больных она была несколько меньшей (рис. 4.2).

По мнению супругов Кори, аномальное накопление гликогена в мышечной ткани нельзя связывать с недостатком глюкозо-6-фосфатазы, поскольку в мышцах этот фермент отсутствует и в норме. В качестве возможного объяснения гликогеноза мышц они предположили нарушение активности амило-1,6-глюкозидазы. Это предсказание вскоре подтвердилось: Форбс [1081] обнаружил такой дефект при одном из клинически выраженных случаев болезни накопления гликогена с вовлечением сердечной и скелетных мышц. Сейчас нам

Рис. 4.2. Освобождение фосфата из глюкозо-6-фосфата в гомогенатах печени различных больных служит мерой активности глюкозо-6-фосфатазы. 1. Значительное освобождение фосфата у больного с нормальной функцией печени. 2. Умеренное снижение при циррозе печени. 3, 4. Значительное снижение у двух пациентов с легкой формой болезни накопления гликогена. 5. Полное отсутствие ферментативной активности у пациента с тяжелой формой болезни Гирке [1044].

4. Действие генов 11

известно большое число ферментативных дефектов при болезни накопления гликогена [1133, 1244].

Хотя по степени проявления различные формы этого заболевания несколько различаются, в клиническом отношении между ними много общего. За одним исключением, все они наследуются по аутосомнорецессивному типу. Если бы ферментативные дефекты не были раскрыты, патология накопления гликогена рассматривалась бы как одно заболевание с характерными внутрисемейными корреляциями по тяжести течения, деталям симптоматики и срокам летального исхода. Таким образом, перед нами пример, когда генетическая гетерогенность, которую можно было лишь предполагать на основании изучения фенотипа (разд. 3.3.5), подтвердилась при анализе на биохимическом уровне: исследование ферментативной активности позволило идентифицировать специфические гены.

В последующие годы темп исследований в области ферментативных дефектов нарастал, и для 588 идентифицированных рецессивных аутосомных генов, которые Мак-Кьюсик описывает в шестом издании своей книги «Менделевское наследование у человека» (1983) [133], более чем в 170 случаях обнаружены специфические ферментативные нарушения. Наши успехи в этой области непосредственно связаны с развитием концепций и методов молекулярной генетики.

Некоторые этапы изучения ферментативных нарушений у человека. Мы приводим лишь наиболее важные вехи этого продолжающегося процесса: 1934 Фёллинг открыл фенилкетонурию

[1080]

1941 Бидл и Татум сформулировали гипотезу «один ген - один фермент» [988] 1948 Гибсон описал первый случай ферментативного нарушения при заболевании у человека (рецессивная метгемоглобинемия) [1099]

1952 Супруги Кори обнаружили недостаточность глюкозо-6-фосфатазы при болезни Гирке [1044]

1953 Джервис продемонстрировал отсутствие фенилаланингидроксилазы при фенилкетонурии [1144]. Бикель сообщил о первой попытке смягчить ферментативное нарушение, применив диету с низким содержанием фенилаланина [1004]

1955 Смитис разработал методику электрофореза в крахмальном геле [1307, 1308]

1956 Карсон и др. обнаружили дефект глюкозо-6-фосфат— дегидрогеназы (G6PD) в случае индуцированной гемолитической анемии [1030]

1957 Калькар и др. описали ферментативную недостаточность при галактоземии, показав, что у человека и бактерий наблюдается идентичное нарушение ферментативной активности [1150]

1961 Крут и Вайнберг продемонстрировали дефект фермента при галактоземии in vitro в культуре фибробластов [1177]

1967 Сигмиллер и др. обнаружили дефект гипоксантин-гуанин—фосфорибозилтрансферазы (HPRT) при синдроме Леша —Найхана [1295]

1968 Кливер описал нарушение эксцизионной репарации при пигментной ксеродерме [1035]

1970 Нейфельд выявил ферментативные дефекты при мукополисахаридозах, что позволило идентифицировать пути расщепления мукополисахаридов [1240]

1974 Браун и Голдстейн доказали, что генетически детерминированная суперпродукция гидроксиметилглютарилСоА-редуктазы при семейной гиперхолестеринемии обусловлена дефектом локализованного в мембране рецептора липопротеинов низкой плотности, который модулирует активность этого фермента (HMG) [1023]

1977 Слай и др. продемонстрировали, что маннозо-6-фосфат (как компонент лизосомальных ферментов) узнается рецепторами фибробластов. Генетический дефект процессинга препятствует связыванию лизосомных ферментов, в результате нарушается их выход в цитоплазму и последующая секреция в плазму (I-клеточная болезнь)

12 4. Действие генов

1980 При псевдогипопаратиреозе обнаружен дефект белка, обеспечивающего сопряжение рецептора и циклазы.

4.2.2. Гены и ферменты у человека: современный уровень знаний

Круг рассматриваемых вопросов. В каждом случае ферментативного дефекта необходим особый подход в методологии исследований и интерпретации результатов. Ограниченный объем настоящего обзора заставляет нас обсуждать эти проблемы кратко и весьма избирательно. Основное внимание будет уделено вопросам 1) важным для понимания общих принципов генетической детерминации и генетического контроля у человека; 2) важным для диагностики ферментативных дефектов и для понимания связи нарушения с этиологией заболевания. Читателям, желающим ознакомиться с группами заболеваний, не рассмотренными в этой главе, мы рекомендуем обратиться к специальным монографиям [203; 182].

4.2.2.1. Обнаружение и анализ ферментативных нарушений

Различия в подходах к исследованию человека и нейроспоры. Успехи в изучении ферментативных нарушений у бактерий и нейроспоры были достигнуты благодаря новому направлению исследований. Авторы при этом не пытались выявить биохимическую природу уже известных мутаций, они индуцировали новые мутации и отбирали среди них те, которые затрагивали известные биохимические реакции. Такой подход дает возможность обнаружить лишь те мутации, которые действительно приводят к появлению дефектов ферментативных систем независимо от того, какую долю в общем числе мутаций они составляют.

В генетических исследованиях человека невозможно ни индуцировать новые мутации, ни выявлять их с помощью системы отбора ауксотрофов, разработанной для нейроспоры. Поэтому изучение нарушений известных путей метаболизма совершенно бесперспективно. Приходится, отталкиваясь от изменений фенотипа, пытаться исследовать лежащие в их основе повреждения ферментных систем. Очевидный недостаток такого подхода заключается в том, что вероятность обнаружить больного с редким заболеванием сравнительно мала. Однако нет худа без добра. Ни одно экспериментальное животное так часто не подвергается медицинскому обследованию, как человек, причем разнообразие методов диагностики огромно: от изучения клинических проявлений, до анализа ферментов. В результате удается наблюдать широкий спектр разнообразных фенотипов. Клинические симптомы, позволяющие распознавать повреждения ферментов. Как обнаружить ферментативные нарушения? Самый простой пример - отсутствие глюкозо-6-фосфатазы при болезни Гирке. Заболевание известно уже давно, клинические проявления позволяют предполагать нарушение специфического метаболического пути. Когда эти реакции будут достаточно изучены и разработаны методы определения активности ферментов, исследователи подойдут вплотную к задаче выявления больных, у которых какой-то один из ограниченного круга ферментов, катализирующих эти реакции, является дефектным. Однако на этом пути возможны затруднения технического характера. Часто мутации обусловливают снижение сродства к субстрату. Однако в большинстве экспериментов in vitro используются настолько высокие концентрации субстрата, что даже измененный мутацией фермент обладает активностью, близкой к норме [1166]. Таким образом, эксперименты in vitro не всегда адекватно отражают активность фермента in vivo. Иногда клинические проявления могут направлять исследователей по ложному пути. Например, при болезни Помпе (гликогеноз II типа) все ферменты основного пути расщепления гликогена совершенно нормальны. Несмотря на это, гликоген накапливается в большинстве тканей, в особенности в сердечной мышце. Выяснилось, что в этом случае изменена а-1,4-глюкозидаза, которая в норме, как и другие гидролазы, находится в лизосомах (разд. 4.2.2.3) и участие которой в метаболизме гликогена не было до сих пор показано<

В других случаях симптомы настолько

4. Действие генов 13

неопределенны, что трудно предположить, какими именно нарушениями метаболизма они вызваны. Так, например, задержки развития у детей могут быть связаны с самыми разнообразными врожденными дефектами метаболизма, возникающими из-за генетически обусловленных повреждений ферментов.

Среди умственно отсталых детей, которые содержатся в больницах, около 1% страдают фенилкетонурией. Впервые это патологическое состояние было обнаружено Фёллингом в 1934 г. при исследовании двух сибсов, моча которых отличалась характерным мышиным запахом и повышенным содержанием фенилпирувата [1080]. Это открытие навело на мысль, что и другие случаи умственной отсталости связаны с врожденными нарушениями метаболизма. Однако многочисленные исследования мочи умственно отсталых больных почти не дали результатов. Хотя и были открыты некоторые другие заболевания, например гомоцистинурия (см. ниже), в большинстве случаев умственной отсталости врожденных нарушений метаболизма, которые можно было бы обнаружить подобным способом, не было.

Заболевания соединительной ткани и костной системы, как правило, не связаны с врожденными дефектами метаболизма, однако есть исключения. Гомоцистинурия – заболевание, обусловленное нарушением метаболизма серусодержащей аминокислоты метионина вследствие недостаточности цистатионсинтазы печени. Симптомы можно объединить в три основные группы: 1) аномалии соединительной ткани и органов зрения-остеопороз, паучьи пальцы, воспаление коленных суставов, деформация хрусталика; 2) нарушения функций центральной нервной системы – в 50% случаев умственная отсталость; 3) тромбозы артерий и вен. Часть перечисленных симптомов совпадает с описанными при синдроме Марфана, который наследуется доминантно, но иногда встречается как спорадический случай вследствие вновь возникающей мутации. Вот почему синдром Марфана легко может быть принят за гомоцистинурию. Но даже отвлекаясь от этого обстоятельства, просто зная общую симптоматологию рецессивных ферментативных дефектов, трудно предположить, что все столь разные симптомы обусловлены дефектом одного конкретного фермента.

Клиническая диагностика нарушений метаболизма. Болезни, вызванные наследственными нарушениями метаболизма, встречаются довольно редко. Это значит, что даже активно работающий педиатр за все время своей практики встретится лишь с несколькими случаями, поэтому трудно ожидать от каждого врача постановки правильного исчерпывающего диагноза и, тем более, правильного лечения. В США и Европе существует несколько педиатрических центров, специализирующихся в области диагностики (в том числе пренатальной) и лечения отдельных заболеваний или небольших групп болезней, обусловленных наследственными повреждениями ферментов. Такая узкая специализация позволяет обеспечить высочайший на сегодня уровень медицинского обслуживания.

Однако долг каждого врача независимо от области его специализации (будь то общая терапия, педиатрия или медицинская генетика) - правильно диагностировать заболевания, вызванные наследственными нарушениями метаболизма. Ранняя диагностика важна не только в отношении болезней, для которых существует специальное лечение (разд. 4.2.2.9), но и в тех случаях, когда необходимо предотвратить рождение больных детей (пренатальная диагностика).

Методы изучения ферментативных нарушений. При изучении ферментативных нарушений пользуются методами энзимологии. Для выяснения генетической природы того или иного дефекта важны не только количественные изменения активности фермента, но и качественные различия в характеристиках нормального и измененного фермента.

Так, например, у больных детей с синдромом Леша—Найхана (30800) [1163] была обнаружена повышенная термолабильность гипоксантин-гуанин—фосфорибозилтрансферазы, а у детей с болезнью Фабри (сопряженной с дефектами фермен-

14 4. Действие генов

Таблица 4.2. Биохимические дефекты у человека, при которых обнаруживается перекрестно-реагирующий материал, что указывает на мутационное изменение фермента или белка [121]

Недостаточность псевдохолинэстеразы 1) («молчащий» фенотип)

Метахроматическая лейкодистрофия

Гликогеноз Мак-Ардла 1)

Ганглиозидоз Зандхоффа

Синдром Леша—Найхана

Неусвоение фруктозы I типа

Фенилкетонурия

Галактоземия

Недостаточность фибриногена

Мукополисахаридоз III В

Недостаточность протромбина

Недостаточность проконвертина 1)

Гемофилия А 1)

Гемофилия В 1)

Недостаточность фактора Стьюарта—Правера

Недостаточность фермента, стабилизирующего фибрин

Недостаточность фактора С4

Недостаточность сахарозоизомальтазы

Болезнь Тея—Сакса

1) Описаны также случаи без перекрестно-реагирующего материала.

тов лизосом) - необычная термостабильность β-галактозидазы.

Часто разница между нормальным и дефектным ферментом выявляется на уровне белков, например по изменению электрофоретической подвижности. В таких случаях у измененного белка потеря или снижение каталитических свойств далеко не всегда сопровождаются изменением его иммунологических характеристик, т. е. белок сохраняет способность связываться с антителами против нормального фермента. Впервые такой перекрестно-реагирующий материал (ПРМ, англ. CRM) описан у бактерий (триптофансинтаза у Е. coli). Подобные перекрестно-реагирующие белки часто обнаруживают при наследственных нарушениях ферментов у человека (табл. 4.2): они играют важную роль в выявлении гетерозигот - носителей гемофилии А (разд. 4.2.2.8).

У человека в отличие от бактерий чаще встречаются качественные изменения фермента, чем случаи полной или почти полной его утраты. Это означает, что большинство известных в настоящее время ферментативных дефектов у человека вызвано мутациями в структурных генах, а не в регуляторных участках, как у бактерий. Эти факты весьма важны для понимания принципов регуляции генов высших организмов, в том числе и у человека (разд. 4.7).

Приведенный ниже метод имеет особое значение для анализа повреждений ферментных систем.

Изучение ферментативных нарушений в культуре фибробластов человека. В 1940-1950 гг., когда удалось получить ответы на ключевые вопросы генетики бактерий, многим ученым казалось, что изучение индивидуальных клеток высших организмов позволит увеличить разрешающую способность генетического анализа эукариот на несколько порядков [162]. Условия культивирования клеточных линий были разработаны несколькими годами раньше. Однако все линии клеток, способные размножаться в культуре неопределенно долгое время, либо получены из злокачественных опухолей, как одна из наиболее распространенных линий – HeLa, либо при культивировании утрачивают способность к контактному торможению, т.е. «трансформируются». Генетически такие клетки отличаются от нормальных: они почти всегда анеуплоидны, причем число хромосом в наборе колеблется внутри одной клеточной линии и даже внутри конкретной культуры. Трансформированные клетки непригодны для генетического анализа, необходимо разработать методы, позволяющие культивировать нормальные, эуплоидные клетки.

Количественные биохимические эксперименты, например измерение активности ферментов, имеют смысл, только если рост клеток можно тщательно контролировать. Полезно рассмотреть принципы этих методов, поскольку они применимы и для анализа клеток из амниотической жидкости.

Возможные трудности. Метод культивирования фибробластов сопряжен с рядом трудностей. Эти клетки плохо растут или вовсе не растут на химически определенных средах. Приходится добавлять сыворотку, содержащую полный набор необходимых питательных веществ. Как правило, для этого используют эмбриональную сыворотку теленка. К сожалению, очень трудно раз и навсегда стандартизировать условия культивирования: необходимо постоянно контролировать и уточнять такие параметры, как рН, содержание глюкозы и др.

Фибробласты нельзя культивировать в жид-

4. Действие генов 15

кой среде, они растут только в виде монослоя клеток, прикрепленных к твердой поверхности. Вот почему отбирать пробы, как это делается при работе с суспензионными культурами, в данном случае нельзя. Приходится вести параллельно много культур небольшого объема. Это приводит к дополнительным вариациям, которые с трудом поддаются контролю. Следует помнить также, что для фибробластов в отличие от стабилизированных опухолевых линий число клеточных делений ограниченно и, следовательно, ограниченны возможности наращивания биомассы.

Рост фибробластов в культуре. Материал, полученный при биопсии кожи и предназначенный для хромосомного анализа, измельчают, помещают в чашки Петри с питательной средой. Чашки содержат в инкубаторе с 5%-ным СО2. Это позволяет поддерживать постоянный рН. Приблизительно через 15 дней фибробласты начинают расти на поверхности среды и в конечном итоге формируют монослой. Клетки отделяют от поверхности обработкой трипсином и после центрифугирования переносят в свежую среду.

Развитие культуры происходит циклично. Цикл состоит из начальной лаг-фазы, за которой следует фаза логарифмического роста, продолжающаяся до тех пор, пока количество клеток в культуре не достигает стационарного значения («лаг-лог стационарный цикл»). В течение цикла активность ферментов и внутриклеточная концентрация метаболитов меняются. Поэтому сравнивать биохимические характеристики можно только с учетом изменений этих параметров на протяжении всех стадий цикла.

Итак, использование фибробластов человека в энзимологических экспериментах требует огромной и кропотливой технической работы [1208]. Затраченный труд, однако, как правило вознаграждается. Именно в культуре фибробластов у больного галактоземией удалось показать нарушение функций галактозо-1-фосфат—уридилтрансферазы [1177]. Благодаря этому методу были обнаружены многие нарушения функций ферментов. Он лежит и в основе пренатальной диагностики, которая в настоящее, время с успехом используется для изучения генетически обусловленных повреждений ферментов.

Однако не все повреждения ферментов проявляются в фибробластах. В таких случаях можно использовать для анализа линии других клеток, например линии лимфоцитов или эритроцитов. Заметим, что, как правило, повреждения ферментов, не поддающиеся исследованию в фибробластах, нельзя изучать и в культуре клеток из амниотической жидкости.

4.2.2.2. Типичные нарушения функций ферментов: ферменты эритроцитов

К настоящему времени подробно изучена группа наследственных заболеваний, связанных с недостаточностью ферментативных систем эритроцитов [933, 1345]. Эритроциты человека – безъядерные клетки, неспособные синтезировать мРНК. Синтез белка происходит в клетках-предшественниках, еще содержащих ядро. В результате в зрелых эритроцитах имеется набор ферментативных систем, которые могут активно функционировать лишь некоторое время. «Отмирание» клеток сопровождается постепенной потерей активности ферментов и происходит после циркуляции в кровотоке в течение 120 суток. Описан ряд синдромов, обусловленных наследственными повреждениями ферментативных систем эритроцитов. Один из них-несфероцитарная гемолитическая анемия.

Генетически обусловленные повреждения ферментов гликолиза. Один из наиболее важных путей катаболизма в зрелых эритроцитах, необходимый для образования богатых энергией фосфатов (АТР),анаэробный гликолиз, или путь Эмбдена—Мейергофа (рис. 4.3). Эта цепь анаэробных реакций приводит к образованию на один моль глюкозы двух молей молочной кислоты и четырех молей АТР, из которых один затрачивается в ходе гликолиза на фосфорилирование глюкозо-6-фосфата и превращение его в фруктозо-1,6-дифосфат и еще один – на превращение глюкозы в глюкозо-6-фосфат. Итого, в полной цепи реакций на моль глюкозы образуется 2 моля АТР, необходимого для разнообразных клеточных функций эритроцитов, таких как поддержание формы (эритроциты представляют собой двояковогнутый диск), работы катионного насоса, а также синтеза разных метаболитов, например глутатиона (GSH) или AMP. Гликолиз катализируется 13 ферментами. Приблизительно 5-10% глюкозо-6-фосфата окисляется на пути так называемого гексозомонофосфатного шунта: в результате последовательности реакций пентозофосфат превращается в фруктозофосфат или глицеральдегид-3-фосфат, которые

16 4. Действие генов

Рис. 4.3. Гликолиз в эритроцитах. В процессе участвует 11 ферментов. Общая скорость реакции лимитируется гексокиназой, которая катализирует превращение глюкозы в глюкозо-6-фосфат. Из него в результате цепи превращений образуется 1,3-дифосфоглицерат. Дифосфоглицерат может либо непосредственно расщепляться с образованием 3-фосфоглицерата и АТР (реакция осуществляется фосфогляцерокиназой), либо через 2,3-дифосфоглицерат превращаться в неорганический фосфат и 3-фосфоглицерат, который затем вновь поступает в систему реакций гликолиза (цикл Рапопорта-Люберинга). В цикле Рапопорта-Люберинга АТР не образуется. Следовательно, расщепление глюкозы может приводить к разному выходу АТР. Однако поддержание постоянной концентрации 2,3-дифосфоглицерата в эритроцитах необходимо для нормальной диссоциации оксигемоглобина. Другое условие нормального функционирования гемоглобина – достаточная концентрация свободного NADH, образующегося в реакции, катализируемой глицеральдегид-фосфатдегидрогеназой. NADH необходим как для превращения пирувата в лактат, так и для восстановления метгемоглобина. Около 5-10% глюкозо-6-фосфата расщепляется в реакциях гексозомонофосфатного шунта. В результате ряда последовательных превращений из пентозофосфата образуется фруктозофосфат или глицеральдегид-3-фосфат, который снова используется в цепи реакций гликолиза. Гексозомонофосфатный цикл в эритроцитах – источник NADH, необходимого для восстановления окисленного глутатиона. Эта реакция осуществляется глутатионредуктазой. Гликолиз контролируется сложной «многоступенчатой» системой, в которой ключевую роль играют гексокиназа, фосфофруктокиназа и концентрация неорганического фосфата и ионов магния. На рисунке показаны также изученные у человека этапы блокирования метаболизма. Нумерация этапов блокирования соответствует нумерации в таблице 4.3, блоки этапов 6 (глицеральдегид-3-фосфатдегидрогеназа) и 10 (енолаза) не внесены в таблицу 4.3, поскольку нет прямых доказательств связи между блокированием метаболизма и недостаточностью этих ферментов. (На этом и других рисунках буквой Ф обозначены фосфатные группы химических соединений.)

4 Действие генов 17

снова утилизируются в цепи реакций гликолиза. Гексозомонофосфатный шунт – важный источник NADPH, необходимого для восстановления окисленного глутатиона. Эта реакция катализируется глутатионредуктазой.

Несфероцитарные гемолитические анемии. В 1953 г. Даше с соавторами описали группу заболеваний, родственных гемолитической анемии, которые назвали несфероцитарными в отличие от наследственного сфероцитоза [1049]. Больные страдали повышенным гемолизом, сопровождавшимся желтухой разной степени тяжести, небольшим увеличением селезенки и образованием камней в желчном пузыре. Эти признаки отличали описанное ими заболевание от наследственного сфероцитоза (18290). Устойчивость эритроцитов к осмотическому давлению у больных несфероцитарной анемией оказалась нормальной, не было обнаружено и структурных изменений гемоглобина. С помощью тонких методов гематологического анализа установлено, что заболевание гетерогенно по своей природе, хотя наблюдается заметное перекрывание параметров для различных форм болезни. Для детального изучения этой группы нарушений необходимо дальнейшее развитие методов энзимологии.

Повреждения ферментов гликолиза. В период между 1961-1975 гг. были описаны генетически обусловленные нарушения 11 из 13 ферментов гликолиза. По меньшей мере для 8 из описанных дефектов удалось показать связь с несфероцитарной гемолитической анемией. В ряде случаев наблюдали сопутствующие нарушения центральной нервной системы и мышц. В общем случае уменьшение активности фермента ниже критического значения приводит к накоплению метаболита, предшествующего данному блоку, и к падению концентрации метаболита, образующегося в данной реакции. Недостаточность некоторых из этих ферментов сопровождается побочными эффектами, например снижением уровня АТР. Однако системе присуща способность к регуляции, которая увеличивает ее стабильность, поэтому на основании данных только клинического и гематологического анализа нельзя судить о природе и степени повреждения фермента. Кроме того, обычно подобный анализ проводят на популяции в основном молодых эритроцитов, в которых активность ферментов, как правило, выше, чем в старых клетках, и поэтому недостаточность по отдельным ферментам может остаться незамеченной.

Некоторые ферментативные нарушения описаны в таблице 4.3. Нумерация использована та же, что и на рисунке 4.3. Приведенные примеры позволяют сформулировать ряд замечаний более общего характера, касающихся дефектов ферментативных систем человека.

Доступность материала для исследования ферментов гликолиза. В настоящее время наследственные повреждения известны почти для всех ферментов гликолиза. Этим гликолиз выделяется среди прочих путей метаболизма, для которых далеко не всегда известно, существуют ли наследуемые дефекты, затрагивающие хотя бы некоторые из ферментов. Проще всего можно объяснить этот факт тем, что необходимую для исследований кровь больных сравнительно легко получить: анализ венозной крови больных, находящихся в стационаре, вполне доступен в отличие, например, от соскоба кожи, не говоря уже о биопсии мозга. Кроме того, эритроциты - это высокоспециализированные клетки, поэтому в них функционируют далеко не все ферментативные системы, имеющиеся в других клетках. Таким образом, количество реакций, которые могут быть нарушены, относительно невелико. Это значительно облегчает анализ.

Перечисленные преимущества клеток крови как объекта исследований широко использовались, например, при изучении глюкозо-6-фосфат—дегидрогеназы и особенно в исследованиях гемоглобина. В результате этих работ сложились основополагающие представления о взаимоотношениях генов и белков, которые они кодируют (разд. 4.3), а также о естественном отборе в человеческих популяциях (разд. 6.2.1.6).

18 4. Действие генов

Таблица 4.3. Случаи несфероцитарной гемолитической анемии (НСГА), обусловленные недостаточностью различных ферментов гликолиза (нумерация та же, что и на рис. 4.4)

Дефектный фермент

Активность фермента у больного

Гематологические симптомы

Симптомы, проявляющиеся в других системах органов, в особенности в центральной нервной системе

Тип наследования

Примечания

1

Гексокиназа

30-60%

НСГА,

часто в тяжелой форме

(У одного больного наблюдались скелетные аномалии)

Аутосомнорецессивный

В некоторых случаях изменены только эритроциты, в других - эритроциты и лейкоциты

2

Глюкозофосфатизомереза (GPI)

15-25%

НСГА, часто в тяжелой форме, иногда желтуха новорожденных

Других симптомов нет

-»-

Уменьшена термостабильность фермента. Обнаружен ряд форм фермента, отличающихся от нормального по электрофоретической подвижности. Активность фермента снижена во всех тканях (т.е. тканеспецифичного фермента не существует)

3

Фосфофруктокиназа (PFK)

8-80%

Легкая форма НСГА

В некоторых семьях встречается тяжелая миопатия и миоглобинемия; в некоторых случаях гликогеноз (без НСГА), тип VII

-»-

Органоспецифические ферменты; возможно даже в эритроцитах имеются два фермента; клиническая и биохимическая гетерогенность

4

Альдолаза

НСГА

—»—

Известно лишь несколько случаев

5

Триозофосфатизомераза (TPI)

≈ 10%

НСГА

Нейромышечные аномалии, слабоумие, ранняя смертность, желтуха новорожденных

—»—

Нарушения активности ферментов проявляются также в лейкоцитах, скелетных мышцах и сыворотке крови. Связь мышечных симптомов с дефектом TPI точно не установлена

7

Фосфоглицерокиназа (PGK)

5-30%

Тяжелая НСГА

Иногда наблюдается олигофрения, атаксия и афазия

Х-сцепленное наследование

В некоторых случаях активность PGK снижается в лейкоцитах

9

Дифосфоглицеромутаза/ фосфатаза

~3%

НСГА средней тяжести

Другие симптомы отсутствуют

Аутосомнорецессивный

11

Пируваткиназа (РК)

5-20%

Сильно различаются (от тяжелой НСГА до нормы)

Симптомы, общие для различных случаев, отсутствуют

—»—

Вариабельность свойств фермента

В таблице отсутствуют некоторые ферменты гликолиза (№ 6, 8, 10), для которых связь с НСГА точно не показана. Подробнее об этих ферментативных дефектах см. [1148].

4. Действие генов 19

Энзимологические исследования позволяют выявить генетическую неоднородность. В разд. 3.3 уже говорилось о том, что все попытки выявить генетическую неоднородность популяции на основе изучения фенотипа наталкиваются на непреодолимые препятствия. Если два фенотипа очень сильно перекрываются и характеризуются аутосомно-рецессивным типом наследования, то единственным доказательством их генетической неоднородности может быть рождение у пары гомозиготных родителей только здоровых детей (разд. 3.1.3). Но, если проведен энзимологический анализ, генетическая неоднородность может быть однозначно установлена по следующим признакам.

1. Все наследуемые дефекты ферментов гликолиза в эритроцитах, приведенные в табл. 4.3 и на рис. 4.3, вызывают практически неразличимые по клиническим проявлениям варианты гемолитической анемии. Один из источников генетической неоднородности - сходство или даже совпадение фенотипических проявлений мутаций в генах, кодирующих разные ферменты данного пути метаболизма. Тот же вывод можно сделать, анализируя информацию, полученную при сравнении изученных случаев болезни накопления гликогена.

2. Второй источник неоднородности – разнообразие изменений одного и того же конкретного фермента, вызываемых различными мутациями в его гене. Чем больше методов используют для анализа, тем больше удается обнаружить различий. Вероятность генетической гетерогенности очень велика, поскольку очень велико число мутаций, вызывающих аминокислотные замены.

При большинстве наследуемых дефектов ферментных систем у гомозигот сохраняется остаточная активность фермента. Во втором столбце табл. 4.3 представлены значения активности ферментов гликолиза в эритроцитах больных, гомозиготных по наследственным дефектам гликолиза. Во всех случаях, когда удавалось провести измерения, наблюдалась остаточная активность, иногда довольно значительная. В некоторых случаях причиной этого могла быть и активность другого фермента, способного катализировать ту же реакцию. Однако, как правило, повреждения фермента в результате отдельной мутации не столь значительны, чтобы полностью его инактивировать. По мнению Киркмана [1866], такая остаточная активность характерна для большинства наследственных повреждений ферментов у человека. Между тем в клетках бактерий мутации, как правило, вызывают полный блок того или иного пути метаболизма. Это обстоятельство можно объяснить отчасти тем, что в человеческой популяции происходит жесткий отбор на жизнеспособность: полный блок ключевых реакций метаболизма с большой вероятностью оказывается летальным. С другой стороны, у бактерий мутации удается обнаружить главным образом в тех случаях, когда активность того или иного фермента утрачена практически полностью. Мутанты с неполным блоком (leaky) нередко выживают даже на минимальной среде. Существует принципиальная разница между характером проявления мутаций у бактерий и человека. Мутантные штаммы бактерий наиболее часто обнаруживают по утрате способности расти на среде, стандартной для конкретной культуры, в то время как большинство мутаций, затрагивающих ферменты человека, обнаружены у больных наследственными заболеваниями. С появлением методов, позволяющих изучать все типы мутаций у бактерий, у них был идентифицирован полный набор мутаций, сходных со структурными мутациями, затрагивающими ферментные системы человека.

Клинические проявления наследственного дефекта фермента тесно связаны с нормальной активностью фермента в различных тканях. В одном организме и даже в отдельной клетке может существовать несколько форм данного фермента [120]. Это так называемые изоферменты. Их существование можно объяснить как негенетическими причинами (вторичные изменения фермента в тканях), так и генетическими (наличием разных генетических локусов, кодирующих полипептиды с более или ме-

20 4 Действие генов

нее значительными структурными различиями). Возможно, для таких пептидов существовал некогда общий предок, и различия между ними – результат дивергенции (разд. 7.2.3). Термин «изоферменты» применяется также к аллельным вариантам одною генетического локуса, различающимся по электрофоретической подвижности. Для многих ферментов показано существование таких множественных форм. Изоферменты катализируют одну и ту же метаболическую реакцию, однако, как правило, они тонко адаптированы к условиям, варьирующим в различных тканях.

Наследственные повреждения ферментов - результат мутаций в отдельных генах. Именно поэтому обычно повреждается только один из имеющихся в организме изоферментов данной группы. Если изменения затрагивают более чем один изофермент, то скорее всего имеется общая для них полипептидная цепь или происходят какие-то вторичные изменения структуры фермента.

Если поврежденный мутацией фермент активен лишь в одной, но не во многих тканях, фенотипическое проявление такой недостаточности имеет характерные особенности. Действие мутаций может быть плейотропным, т. е. одна мутация может вызывать целый ряд последствий. Естественно предполагать, что недостаточность ферментов, активных в нескольких типах тканей, будет обладать плейотропным эффектом. Это один из вероятных, но, конечно, далеко не единственный механизм возникновения плейотропии. Даже если фермент функционален только в одной ткани, его отсутствие может вызвать изменения в других тканях за счет сдвигов метаболизма, вызванных первичной мутацией. С другой стороны, в некоторых случаях, наследственные дефекты ферментных систем, которые можно обнаружить во всех тканях, выражаются в четких изменениях фенотипа только за счет соответствующих нарушений в одной из них. Вероятно, в других тканях дефект каким-то образом компенсируется.

Примеры, перечисленные в табл. 4.3, наглядно иллюстрируют все случаи плейотропного действия мутаций. Например, недостаточность фосфофруктокиназы (PFK) вызывает симптомы умеренной несфероцитарной гемолитической анемии средней тяжести, такие как небольшая анемия, умеренная желтуха, а также некоторое увеличение селезенки: эти изменения фенотипа можно объяснить сокращением времени жизни эритроцитов. Для таких больных характерна нормальная активность PFK в лейкоцитах, тромбоцитах и скелетных мышцах. Проявление этого дефекта, по всей вероятности, ограничено только эритроцитами [1147].

Больные из других семей страдают слабой формой гемолитической анемии, но в сочетании с выраженной миопатией [1191]: как те, так и другие симптомы, являются следствием болезни накопления гликогена [1327]. PFK из мышечных клеток и эритроцитов различаются по электрофоретической подвижности, хроматографическим и иммунологическим характеристикам. Спектр изоферментов, по-видимому, чрезвычайно многообразен: только в эритроцитах обнаружено по меньшей мере два варианта [1148]. Различия в проявлениях плейотропного эффекта в разных семьях могут объясняться тем, что в них наследуются разные мутации, затрагивающие разные полипептидные цепи, которые могут входить или не входить в состав изофермента, адаптированного к конкретной ткани.

Однако в ряде случаев ферментативная недостаточность наблюдается во всех исследованных тканях, а изменения фенотипа обнаруживаются только в одной из них. Примером может служить наследственная недостаточность глюкозофосфатизомеразы (GPI). У обследованных больных с пониженной активностью этого фермента в эритроцитах снижение активности имело место также в лейкоцитах, тромбоцитах, фибробластах, мышцах и в печени. Во всех перечисленных тканях биохимические характеристики фермента оказались идентичными. Несмотря на тщательный анализ, обнаружить даже намек на какие-либо тканеспецифические формы не удалось. Тем не менее среди наблюдаемых клинических симптомов

4. Действие генов 21

доминируют те, которые определяются нарушениями функций эритроцитов.

Больные страдают тяжелой формой гемолитической анемии, которая проявляется у новорожденных как сильная желтуха. В настоящее время известно довольно много структурных мутаций глюкозофосфатизомеразы: нередко встречаются составные гетерозиготы (компаунды) по таким мутациям. Заметим, однако, что далеко не все случаи недостаточности приводят к возникновению заболевания или сколько-нибудь заметным изменениям фенотипа [1003].

Недостаточность пируваткиназы (РК) (26620). Недостаточность пируваткиназы – один из наиболее часто встречающихся дефектов гликолиза эритроцитов. У больных, гомозиготных по этому нарушению, можно наблюдать самые разнообразные гематологические симптомы. У некоторых из них гемолитическая анемия может быть полностью компенсирована, другие страдают тяжелыми повторяющимися приступами несфероцитарной анемии. Приведем обязательные признаки этого наследственного заболевания:

1) наличие остаточной активности фермента – 5-20% для гомозигот и около 50% для гетерозигот по данному признаку. Клинических признаков заболевания гетерозиготы не обнаруживают;

2) количественные характеристики фермента, такие как кинетика реакции, специфичность связывания с ADP и UDP, термостабильность, оптимальные значения рН и изоэлектрическая точка, указывают на существование целого ряда вариантов с различными свойствами. Вероятно, большинство из них возникло в результате структурных мутаций [1149; 1148]. По результатам анализа на белковом уровне трудно с достоверностью определить, действительно ли больной гомозиготен по данному варианту или является носителем двух дефектных аллелей (компаунд-гетерозигота) (разд. 3.1.3, рис. 3.12).

Активность ферментов и клинические проявления у гетерозигот. Для большинства случаев нарушений гликолиза, приведенных в табл. 4.3, уровень активности фермента определяли у больных, гетерозиготных по наследственному дефекту. Как правило, их активность ниже нормальной, но выше, чем у гомозиготных больных. Этот факт отражает общее правило: у гетерозигот по дефектному ферменту сохраняется до 50% нормальной активности. Обычно такое снижение активности не приводит к патологическим симптомам: половины активности вполне достаточно, чтобы поддерживать нормальные функции организма.

Тот факт, что гетерозиготы сохраняют не более 50% нормальной активности, очевидным образом подтверждает, что количество фермента жестко контролируется соответствующим локусом. У здоровых гомозигот, несущих два нормальных структурных гена, активность фермента составляет 100%, а у гетерозигот – только 50%. В гетерозиготном организме единственный полноценный структурный ген не в состоянии компенсировать функции мутантного гена, продукт которого неактивен. Это обстоятельство чрезвычайно важно для понимания механизмов генной регуляции у млекопитающих, отличающихся от аналогичных механизмов у бактерий.

Аэробное образование энергии в эритроцитах: гексозомонофосфатный путь [994]. В левой части рис. 4.3 представлена цепь аэробных реакций, так называемый гексозомонофосфатный цикл, известный также, как пентозофосфатный цикл, или шунт. Основное его назначение-формирование восстановительного потенциала клетки в виде NADPH. В ходе реакции, катализируемой глюкозо-6-фосфат—дегидрогеназой, происходит окисление глюкозо-6фосфата с образованием 6-фосфоглюконата [1030], который в результате ряда последовательных этапов превращается в О-рибозо-5-фосфат.

Ферментативное восстановление окисленного глутатиона сопровождается окислением NADP. Восстановленный глутатион несет SH-группы и может предохранять клетку от действия свободных радикалов таких соединений, как Н2О2.

22 4. Действие генов

Обнаружено наследственное заболевание, при котором почти полностью отсутствует восстановленный глутатион. Оно вызвано нарушением синтеза глутатионсинтетазы. В некоторых случаях недостаточность этого фермента сопровождается оксипролинемией [1148]. Недостаток восстановленного глутатиона приводит к развитию несфероцитарной гемолитической анемии, связанной с повышенной чувствительностью к медикаментам - сильным окислителям. Многие лекарства обладают окислительной способностью и снижают восстановительный потенциал клетки [1009; 1269].

Недостаточность глюкозо-6-фосфатдегидрогеназы (G6PD) (30690) [1079; 999; 1002; 1225; 1224; 1146] (рис. 4.3). Генетически детерминированные нарушения гексозомонофосфатного пути обусловливают повышенную чувствительность к некоторым лекарствам. Это наблюдение лежит в основе одного из ключевых принципов фармакогенетики (см. разд. 4.5.1). Во время войны в Корее 1950-1952 гг. все американские солдаты проходили профилактический курс лечения противомалярийным препаратом «примахин» [8-(4,амино1-метилбутиламино)-6-метоксихинолин]. Примерно у 10% чернокожих солдат и у 1-2 из 1000 белых (в основном выходцев из Средиземноморских стран) в ответ на прием примахина развивалась сосудистая гемолитическая реакция. Ранее сходные реакции иногда наблюдали при лечении сульфаниламидами и памахином больных негров. Было известно также, что гемолитические реакции могут иметь место у некоторых жителей Сардинии после употребления в пищу бобов Viciafaba.

Тщательные исследования «примахин-чувствительных» эритроцитов у негров показали, что чем больше возраст эритроцитов, тем выше их чувствительность к гемолизу. Именно это объясняет малую продолжительность гемолитической реакции (рис. 4.4). После гибели всех

Рис. 4.4. Гемолитическая реакция после введения примахина. В течение первых дней курса лечения многие эритроциты разрушаются в результате гемолиза. Это приводит к усиленному образованию новых эритроцитов; увеличению количества ретикулоцитов и повышению гемоглобина. Гемолизу подвергаются только те эритроциты, возраст которых превышает 60 дней; в ходе лечения в популяции эритроцитов увеличивается количество более молодых клеток [1030].

4. Действие генов 23

Рис. 4.5. Образование восстановленного глутатиона (GSH) из окисленного глутатиона (GSSG) как функция объема (мл) диализованного гемолизата. Сплошная линия характеризует чувствительность к примахину больного, пунктирная – чувствительность здорового человека. А. Активность глутатионредуктазы. Б. Активность G6PD. В. Активность 6-фосфоглюконат-дегидрогеназы. Нарушена только реакция, обозначенная номером 12 на рис. 4.3 (Б) [1030].

старых клеток популяции гемолиз прекращается, несмотря на продолжение приема примахина.

Этот факт вначале пытались объяснить действием иммунных механизмов. Позже была обнаружена нестабильность глутатиона в эритроцитах больных, чувствительных к примахину, при инкубации с ацетилфенилгидразином. В 1956 г. Карсон с сотрудниками обнаружили наследственное повреждение фермента, вызывающее эту нестабильность [1030]. Были изучены следующие реакции (см. также рис. 4.5):

a) GSSG + NaDPH + Н +

 2GSH + NaDP+;

б) глюкозо-6-фосфат

 6-фосфоглюконат + NADPH + Н +

в) 6-фосфоглюконат

Оказалось, что лимитирующим фактором является недостаточность G6PD, и гемолитические реакции у больных, чувствительных к примахину, связаны с недостаточностью именно этого фермента.

Довольно скоро выяснилось, что гемолитические реакции такого типа встречаются чаще у мужчин, чем у женщин. Было проведено количественное определение стабильности глутатиона, основанное на измерении его концентрации до и после инкубации эритроцитов с ацетилфенилгидразином 1). Кривые распределения, построенные для 144 обследованных американских негров, имели ярко выраженный бимодальный характер, причем в значительной части популяции уровень содержания глутатиона был крайне низким. В группе из 184 негритянок кривая смещена влево, а доля больных с низким содержанием глутатиона гораздо меньше, чем в группе мужчин. Отсюда следует, что данный признак сцеплен с Х-хромосомой; низкое содержание глутатиона после инкубации с ацетилфенилгидразином характерно для гомозиготных женщин и гемизиготных мужчин, а промежуточное – для гетерозиготных женщин. Это предположение вскоре получило подтверждение в работах по анализу родословных [1034]. Сходные картины распределения были получены и при использовании методов прямого анализа ферментов в популяции. Заметим, что величины, полученные для гетерозигот, оказались средними между нормой и значением, характерным для гомозиготных больных (рис. 4.6).

1) Этот тест использовали для выявления чувствительности к примахину до обнаружения наследственных дефектов G6PD.

24 4 Действие генов

Рис. 4.6. Распределение активности G6PDу мужчин и женщин негритянского происхождения. Обратите внимание на практически полное разделение групп здоровых и больных мужчин [93]

Рис. 4.7. Электрофоретические формы G6PD у негритянского населения Мужчины гемизиготны и могут иметь генотип А, А или В, женщины могут быть гомозиготными по любому из этих аллелей и гетерозиготными (возможны любые комбинации аллелей) Полосы, соответствующие аллелю А, показаны тонкими линиями вследствие низкой активности фермента они слабо окрашиваются Генотип ВВ трудно отличить от ВА, как и АА – от АА [93]

Различия между африканским и средиземноморским вариантами. Спустя несколько лет после открытия недостаточности глюкозо-6-фосфат—дегидрогеназы было обнаружено, что африканский и средиземноморский варианты различаются по степени тяжести детерминируемой ими патологии у мужчин. Активность фермента в эритроцитах негров составляет 10-20% от нормы, тогда как у представителей средиземноморской популяции она никогда не бывает выше 5%. Изучение активности G6PD в лейкоцитах показало, что у негров она практически не отличается от нормы, а у жителей Средиземноморья в некоторых случаях существенно снижена.

Для выявления различных форм G6PD использовали метод электрофореза. Подвижность нормального фермента дикого типа обозначили как В. Среди негров с нормальной активностью G6PD у 20% был обнаружен более быстрый компонент: его обозначили как А. У негров с недостаточностью глюкозо-6-фосфат—дегидрогеназы этот фермент обладал подвижностью А-типа, а его активность была сильно снижена (фенотип А). При недостаточности G6PD, характерной для средиземноморской популяции, электрофоретическая подвижность фермента близка к нормальной (фенотип В). В популяции здоровых белых глюкозо-6-фосфат—дегидрогеназа практически во всех случаях мигрирует в геле как нормальный компонент В (рис. 4.7).

Характеристика различных вариантов G6PD. В популяциях человека выявлен целый ряд редких типов G6PD. В связи с этим встал вопрос о необходимости стандартизации приемов их классификации Рекомендации группы специалистов в этой области были опубликованы Всемирной организацией здравоохранения в 1967 г. [996]. В соответствии с ними характеристика G6PD включает следующие аспекты:

а) активность фермента;

б) электрофоретическая подвижность в различных буферных системах;

в) субстратная специфичность (константа Михаэлиса—Ментен) к глюкозо-6фосфату, NADP и NAD;

г) использование аналогов субстрата: 2-дезокси-глюкозо-6-фосфат, галактозо-6-фосфат и деамино-NADP. Аналоги субстрата обычно применяют для выявления тонких качественных различий в свойствах ферментов;

д) термостабильность;

е) зависимость активности фермента от

4 Действие генов 25

Таблица 4.4,А. Варианты аномалий глюкозо-6-фосфат—дегидрогеназы (см. также [133])

Вариант

Примеры

Активность фермента увеличена

G6PD Hektoen

Активность фермента близка к нормальной

G6PD А+ (распространена в тропической Африке)

Активность фермента несколько снижена (10-60% от нормы у гемизиготных мужчин); повышена чувствительность к окисляющим агентам; фавизм не наблюдается

G6PD А (распространена в тропической Африке), G6PD Anant (Таиланд), G6PD Canton (Южный Китай)

Сильное нарушение активности фермента; гемолиз

G6PD (средиземноморский тип), G6PD

скомпенсирован, чувствительность к окисляющим агентам резко повышена, может наблюдаться фавизм

El Fayoum (Египет), G6PD Zahringen (Германия)

Сильное нарушение активности фермента и хронический гемолиз даже в отсутствие окисляющих агентов; несфероцитарная анемия

G6PD Albuquerque , G6PD Beanjon, G6PD Freiburg

Таблица 4.4,Б. Некоторые обычные варианты глюкозо-6-фосфат—дегидрогеназы

Варианты

А

Med

Canton

Mahidol

Область распространения

Африка

Греция, Италия, Средиземноморье

Китай

Таиланд

Активность G6PD (%)

10-20%

0-5%

4-25%

5-16%

Гемолиз при инфекциях и при лечении лекарственными препаратами

+

+

+

+

Фавизм

?

+

+

?

Врожденная желтуха

редка

+

+

+

Падение гемоглобина при гемолизе (г/100 мл)

2-10

4-10

4-10

2-8

Увеличение активности G6PD в эритроцитах после гемолиза

+

минимальное

+

[?]

+

Варианты фермента, характерные для разных популяций человека. На основании перечисленных выше параметров в настоящее время различают более 200 вариантов G6PD [1001] (см. также разд. 7.5.8). Их можно разделить на следующие группы (табл. ААА, ААБ):

а) варианты с повышенной активностью фермента. Известно всего дваG6PD Hektoen и G6PD Hartford;

б) варианты с активностью, близкой к норме Один из них – упоминавшийся ранее вариант А+ – обнаруживается у 20-25% мужчин-негров в тропической Африке и у их американских потомков;

в) варианты с умеренно сниженной активностью. Активность фермента у гемизиготных мужчин составляет от 10 до 50% от нормальной. Иногда обнаруживается чувствительность к лекарствам, вызывающим гемолитические реакции; кожных реакций нет;

г) варианты с резко выраженной недостаточностью G6PD и умеренным компенсированием гемолитических реакций. Типичный представитель этой группы – средиземноморский вариант;

д) варианты с резко выраженной недостаточностью фермента, сопровождаются хроническим гемолизом даже в

26 4. Действие генов

отсутствие окисляющих агентов. Такие варианты вызывают врожденную несфероцитарную гемолитическую анемию.

Приведенная здесь классификация учитывает не все важные особенности глюкозо-6-фосфат—дегидрогеназы, однако она весьма полезна как отправная точка для дальнейших исследований.

Углубленный биохимический и молекулярный анализ [1167; 1001; 1002]. Все исследованные случаи недостаточности по G6PD, для которых проводили анализ родословных, подтверждают сцепление гена, детерминирующего этот признак, с Х-хромосомой. Весьма вероятно поэтому, что мутации, обусловливающие все изученные варианты, действительно принадлежат одному локусу и что по крайней мере для эритроцитов не существует другого локуса, кодирующего глюкозо-6-фосфат—дегидрогеназу. Все известные на сегодняшний день варианты, по-видимому, обусловлены различными мутациями в одном структурном гене.

Активный фермент имеет молекулярную массу 120 кДа и представляет собой димер. Полипептидные цепи субъединиц состоят из 450 аминокислот: определена их последовательность [1368]. В результате построения пептидных карт после обработки трипсином (метод «отпечатков пальцев») выяснилось, что молекулярные нарушения по меньшей мере двух вариантов заключаются в замене всего одной аминокислоты: G6PD А+ отличается от G6PD В+ единственной заменой аспарагиновой кислоты на аспарагин, а в варианте G6PD Hektoen гистидин замещен на тирозин. Согласно генетическому коду, эти замены вполне могут быть связаны с точковыми заменами оснований в кодирующей цепи ДНК. Таким образом, генетический анализ был перенесен на уровень ДНК (разд. 3.6).

Ферментативная активность G6PD обнаружена в клетках большинства (возможно, и всех) тканей; оказалось, что тканеспецифичных форм изоферментов нет, и если имеется мутантная форма глюкозо-6-фосфат—дегидрогеназы, то обнаруживается она во всех тканях.

Важность изучения вариантов G6PD для понимания механизмов недостаточности ферментативных систем у человека. Система G6PD служит замечательной моделью, поскольку у мужчин с мутацией в Х-хромосоме имеется продукт только мутантного гена. Напротив, у гетерозигот по аутосомным мутациям нормальный и измененный продукт представлены в соотношении 1:1, и, следовательно, обнаружить незначительные изменения физико-химических свойств продуктов мутантного гена достаточно сложно. G6PD обладает и некоторыми другими особенностями, позволяющими проводить генетический анализ гораздо более подробно, чем это возможно для большинства наследственных дефектов ферментативных систем человека.

С помощью этой модельной системы были установлены закономерности, общие для многих наследственных дефектов ферментов человека.

1. Использование широкого набора методов позволяет обнаружить большое количество мутантов, различающихся по ряду параметров. По-видимому, почти каждое вызванное мутацией изменение в структуре фермента влияет на его физиологические особенности.

2. Изменения фенотипа, вызванные мутациями, образуют непрерывный ряд от вариантов с практически неизмененными биологическими функциями (их можно обнаружить лишь с помощью специальных методов) к тем, которые проявляются только в неблагоприятных условиях, и вплоть до вариантов, вызывающих развитие заболевания даже в отсутствие неблагоприятных факторов. Большинство мутаций безразлично для организма и не приводит к развитию болезни. Естественно, что мутации, вызывающие патологические симптомы, обнаруживаются с большей вероятностью, так как больных, страдающих гемолитической анемией, обследуют на предмет недостаточности какого-либо фермента гораздо чаще, чем здоровых людей.

3. Большинство вариантов наследственных нарушений ферментов встречается сравнительно редко. Однако в отдельных популяциях какой-то аллель может

4. Действие генов 27

оказаться распространенным (табл. 4.4); причины этого явления обсуждаются в разд. 6.2.1.6.

4. Практически все мутационные варианты обеспечивают остаточную активность фермента, и, если принять во внимание качественные различия в свойствах ферментов, все типы нарушений можно объяснить структурными мутациями в гене, который удалось точно локализовать в Xхромосоме (разд. 3.4.3).

Перечисленные выводы вполне справедливы для большинства или даже для всех наследственных дефектов ферментативных систем человека. Последний вывод связан с локализацией гена G6PD в Х-хромосоме. Известно, что в большинстве клеток гетерозиготных женщин у Х-сцепленных генов функционально активен только один из двух аллелей. Это обстоятельство может оказаться полезным для решения проблем, связанных с ростом опухолей и клеточной дифференцировкой. Так, например, было обнаружено, что в клетках лейомиомы матки у женщин, гетерозиготных по двум электрофоретическим вариантам G6PD, присутствует только один тип фермента [1002]. Это можно объяснить происхождением всех клеток опухоли от одной клетки. Подобные наблюдения, позволяющие предполагать моноклональное происхождение опухолей, имеются для большинства неопластических процессов (см. разд. 5.1.6).

Другая проблема связана с количеством стволовых кроветворных клеток, которые дают начало популяции эритроцитов. Если женщина гетерозиготна и имеет, например, аллели G6PD А+ и В + , а инактивация Х-хромосомы происходит случайным образом, то относительное количество стволовых клеток с функционирующими генами А+ и В+ описывается биноминальным распределением: (1/2А+ + 1/2В + )n, где иколичество стволовых клеток. Следовательно, вероятность того, что у гетерозиготы все эритроциты будут А+ (или все В+), составляет (1/2)". На практике для использования этого принципа требуется количественная оценка соотношения А- и В-форм фермента в исследуемой ткани. Предварительные данные свидетельствуют о том, что количество стволовых кроветворных клеток в момент инактивации Х-хромосомы, по-видимому, невелико (на 12-16-й день развития эмбриона всего около 5000 клеток; разд. 2.2.3.3). Затем их количество возрастает, но не более чем в 3-5 раз.

Этот метод основывается на том допущении, что отбора клеток с одной из форм G6PD не происходит. Однако имеются некоторые данные, указывающие на наличие селективного преимущества клеток с нормальным вариантом фермента у гетерозигот по гену G6PD. В такой ситуации оценка пула эмбриональных или стволовых клеток становится менее надежной.

Фенокопия наследственного дефекта фермента: недостаточность глутатионредуктазы [1077; 1078]. С гексозомонофосфатным циклом тесно связана реакция восстановления GSSG до GSH, которая катализируется глутатионредуктазой

(рис. 4.3). В литературе прежних лет о,писан ряд родословных с мнимыми дефектами этого фермента; в таких семьях были обнаружены разнообразные гематологические отклонения. Однако результаты анализа родословных в действительности не согласуются с предположением об обычном дефекте глутатионредуктазы. Позже было показано, что недостаточность этого фермента почти всегда связана с отсутствием его кофермента – флавинадениндинуклеотида, что в свою очередь объясняется низким содержанием в пищевых продуктах рибофлавина (витамина В2) [997]. После введения рибофлавина активность глутатионредуктазы нормализуется в течение нескольких дней.

Установлено, что это патологическое состояние часто встречается на севере Таиланда, что обусловлено низким содержанием рибофлавина в традиционной диете. Таким образом, не всякое отклонение в работе фермента является наследственным, даже если оно распространено в определенной популяции.

В литературе описаны истинные генетически обусловленные дефекты глутатионредуктазы. У человека известны и другие наследственные отклонения, связанные с ненормально высокой потребностью в

28 4. Действие генов

определенных коферментах, которые необходимо в таких случаях добавлять к пище в виде витаминов. В качестве примера можно привести наследуемый сцепленно с Х-хромосомой рахит, устойчивый к витамину D [958], и зависимость от пиридоксаля, сопровождающаяся эпилептическими припадками (см. также разд. 3.1.4). Возможно, в будущем будет обнаружена недостаточность по глутатионредуктазе, обусловленная наследственной недостаточностью по рибофлавину.

Имитация генетического дефекта воздействием извне называется фенокопией. Этот термин был предложен в 1935 г. Гольдшмидтом [1106]. Согласно определению, фенокопия - это воспроизведение генетически детерминированного признака под действием внешних факторов. Вызывая тепловой шок у дрозофилы дикого типа на разных стадиях ее развития, Гольдшмидту удалось получить многочисленные фенотипические отклонения, подобные вариантам, возникающим обычно в результате мутаций.

Эксперименты с фенокопиями были выполнены на многих видах, они сыграли важную роль в развитии представлений о механизмах нормального эмбрионального развития и возникновения уродств. Однако их значение было переоценено. Тем не менее при нарушениях метаболизма у человека возможность фенокопии всегда следует проверить, поскольку в таких случаях бывает возможна эффективная терапия.

Среди метаболических нарушений человека частой фенокопией является гипотиреоз, обусловленный недостатком неорганического йодида, – патологическое состояние, распространенное в альпийских областях Европы и в некоторых других районах мира. В этом случае недостаточность жизненно необходимого неорганического иона приводит к тем же последствиям, что и нарушение синтеза тиреоидного гормона, которое наблюдается в некоторых семьях (рис. 4.24). Тем не менее, хотя клинически эти случаи близки, с точки зрения патофизиологии, между ними нет ничего общего.

Нарушения метаболизма нуклеотидов. В эритроцитах необходимый уровень АТР поддерживается благодаря реакциям гликолиза (рис. 4.3). Известна и другая реакция, ведущая к образованию АТР:

Затем ADP в ходе гликолиза превращается в АТР. Одна из энергоемких функций клетки, для которой необходим АТР,это транспорт катионов. Он непосредственно связан с ферментативной активностью АТРазы. Этот фермент локализован в клеточной мембране и присутствует в двух фракциях, которые могут активироваться ионами К+ и Na+ или Mg++. Он гидролизует АТР до AMP. Недостаточность АТРазы также может вызывать несфероцитарную гемолитическую анемию (НСГА). Описан ряд случаев, несколько различающихся по симптомам и гематологическим характеристикам [1046; 1118; 1120; 1203]. Недостаточность по аденилаткиназе (АК) (20160) зафиксирована у тринадцатилетнего мальчика, страдающего НСГА. Активность АК в эритроцитах составляла 1-13% нормальной. Уровень АТР и ADP в эритроцитах оказался нормальным, а уровень AMP повышен. Дефект наследовался как аутосомно-рецессивный признак. Недостаточность по пиримидин5'-нуклеотидазе была впервые обнаружена у больного, страдающего хроническим гемолизом средней тяжести [1333], а несколько позже у ряда других больных [1148].

Зрелые эритроциты обладают способностью синтезировать NAD в больших количествах из никотиновой кислоты, АТР и 5-фосфо-D-рибозо-1-пирофосфата. Для этой реакции требуется нормальная работа гликолитических ферментов. Гексозомонофосфатный цикл, по-видимому, не является существенным источником рибозофосфата, поскольку в клетках, дефектных по G6PD, содержание NAD соответствует норме. Для синтеза NADP из NAD нужна киназа. Возможно, сравнительно небольшое число установленных нарушений метаболизма нуклеотидов не отражает действительной ситуа-

4 Действие генов 29

ции, оно может объясняться сложностью методов определения активности ферментов.

Изучение ферментов, не функционирующих в клетках крови, а также соответствующих дефектов связано с серьезными трудностями. Многие такие ферменты удается обнаружить в фибробластах, выращенных в культуре после биопсии кожи. В отличие от эритроцитов фибробласты содержат ядра. Они способны делиться и осуществлять все стадии синтеза белков и потому значительно полнее, чем эритроциты, обеспечены ферментами. Фибробласты лишены лишь некоторых ферменгов, характерных для специализированных групп клеток, например клеток печени (в частности, в фибробластах нет фенилаланингидроксилазы, которая является дефектной при фенилкетонурии). В фибробластах выявляются нарушения ферментов, катализирующих многие различные метаболические пути. Именно поэтому изучение активности ферментов в фибробластах внесло существенный вклад в наши знания о дефектах ферментов.

Ниже мы остановимся на одной группе заболеваний, которая также позволяет сформулировать ряд более общих выводов о дефектах ферментов у человека. Это мукополисахаридозы, которые относят к обширной группе патологических состояний, обусловленных нарушением различных ферментов лизосом, а также - сфинголипидозы и муколипидозы.

4.2.2.3 Мукополисахаридозы

Недостаточность ферментов лизосом. Ферменты или ферментные системы обычно локализуются в одном определенном районе клетки. Например, ферменты системы транспорта электронов и окислительного фосфорилирования ADP, как и другие ферменты, окисляющие пируват, жирные кислоты и некоторые аминокислоты, локализуются в митохондриях. Многие гидролитические ферменты сконцентрированы в лизосомах [1128]. Если в результате разрушения мембраны лизосомы эти ферменты выходят в цитоплазму, вся клетка подвергается самоперевариванию и гибнет. В норме процесс переваривания осуществляется внутри лизосом, в которых расщепляются не только дефектные компоненты клетки и материал межклеточной соединительной ткани, но и внешний материал, поглощаемый клеткой. К клеточным элементам, которые подвергаются деградации в лизосомах, относятся мукополисахариды, муколипиды и сфинголипиды (рис. 4.8). В настоящее время описаны дефекты многих ферментов, участвующих в деградации [1029, 1240, 1241].

Метаболические пути, нарушения которых вызывают дефект эритроцитов и, следовательно, гемолитическую анемию, уже известны биохимикам, и анализ недостаточности ферментов заключался в изучении отдельных этапов этих реакций. В случае мукополисахаридозов ситуация была совершенно иной. Вначале были изучены наследственные заболевания, и только потом анализ дефектов позволил установить последовательность ферментативных реакций. Вот почему мы начнем с описания этих заболеваний, а затем перейдем к биохимическим нарушениям, дефектам фермент ов и реконструкции нормального метаболического пути. Этот пример показывает, каким образом наследственные заболевания (фактически эксперименты, поставленные самой природой) помогают понять нормальную физиологию и биохимию.

Мукополисахаридозы: клиническая картина. Мукополисахаридозы - группа редких

заболеваний, для которых характерно сочетание многих, зачастую тяжелых симптомов, от нарушений скелета или системы кровообращения до расстройств умственной деятельности. Клинические симптомы являются результатом накопления в разных тканях избыточных сульфатированных полисахаридов.

В табл. 4.5 приведена классификация, а также главные результаты клинических исследований. За исключением мукополисахаридоза II типа (синдром Хантера), все эти дефекты наследуются как аутосомнорецессивные признаки. Клинические симптомы варьируют от сравнительно легких до крайне тяжелых. Описаны две формы

30 4 Действие генов

Рис. 4.8. Схематическое изображение функционального цикла нормальной лизосомы. 1А Аппарат Гольджи, 1Б Первичная лизосома, 2 Фаголизосома, 3 Вторичная лизосома, 4 Остаточное тело (Courtesy of Dr Buselmaier)

синдрома Хантера (30990), которые удается различить у детей старше четырех лет тяжелая «ювенильная» форма, при которой смерть наступает до половой зрелости, и легкая «поздняя» форма, при которой умственная отсталость почти или полностью отсутствует, а прогноз является гораздо более благоприятным Заболевание VI типа (синдром Марото—Лами) (25320) отличается от заболевания I типа (синдром Хурлера) тем, что умственные способности пациентов нормальные и менее выражены аномалии лица В этом случае также наблюдаются два различных подтипа – один с характерным достаточно быстрым течением и тяжелой клинической картиной и другой, прогрессирующий относительно медленно При обоих типах заболевания возможна смерть в возрасте 10-30 лет от нарушений в работе сердца Обнаружены два подтипа IV типа заболевания (синдром Моркио) IVA с тяжелой клинической картиной и IVB, который протекает легче

Отложение запасных веществ в лизосомах и выделение с мочой Гистохимические исследования показали, что эти патологические состояния вызваны нарушениями отложения запасных веществ Во многих клетках, в том числе в фибробластах, клетках печени, клетках Купфера, ретикулярных клетках селезенки и лимфатических узлов, лейкоцитах, эпителиальных клетках почечных клубочков и нервных клетках наблюдаются вакуолизация и увеличение размеров в результате отложения больших количеств запасного материала Установлено, что главными запасными веществами являются сульфатированные гликозаминогликаны

Электронно-микроскопические исследования позволили прояснить ситуацию Было установлено, что запасные соединения откладываются в вакуолях округлой формы, напоминающих лизосомы, которые можно визуализировать у экспериментальных животных после введения им неметаболизируемых соединений Поэтому был сделан вывод, что эти вакуоли представляют собой лизосомы, наполненные непереваренными или лишь частично расщепленными гликозаминогликанами [1129] Это подтвердилось и для других тканей Хотя дефекты метаболизма оставались неисследованными, нарушения отнесли к лизосомным болезням, так как они сопровождались явной перегрузкой системы лизосом Важнейшая функция лизосом заключается в гидролитическом расщеплении макромолекул, поэтому представлялось вероятным, что отложение избыточных запасных веществ связано с недостаточностью гидролитических ферментов лизосом Другим доказательством нарушения метаболизма гликозаминогликанов было избыточное выделение этих соединений с мочой Табл 4 6 дает некоторое

Таблица 4.5. Основные клинические признаки мукополисахаридозов [1029; 1312]

Мукополисахаридоз

Умственная или двигательная отсталость

Задержка роста

Грубые складки на лице

Дисплазия костей

Общие контрактуры

Гепатоспленомегалия

Помутнение хрусталика

Характер наследования

Тип 1)

Название

IH

Синдром Хурлера (1)

+ + +

+ +

+ + +

+ + +

+ +

+ +

+

Аутосомнорецессивный

IS

Синдром Шайе (1)

±

+

+

+

+

IH/S

Компаунд по синдромам Хурлера и Шайе О)

+

+

+ +

+ +

+ +

+

+

IIA

Тяжелый синдром Хантера (2)

+

+

+

+ +

+

+

+

Х-сцепленный, рецессивный

IIВ

Легкий синдром Хантера (2)

+

+

+

+ +

+

+

IIIА

Синдром Санфилиппо

А (ЗА)

+ + +

+

+

±

+ +

Аутосомнорецессивный

IIIВ

Синдром Санфилиппо В(ЗВ)

+ + +

+

+

+

+ +

IIIС

Синдром Санфилиппо С (ЗС)

+ + +

+

+

+

+ +

HID

Синдром Санфилиппо D (3D)

+ + +

+

+

±

+ +

IVA

Синдром Моркио А (4)

++ +

+

+ + +

+

+

+

Аутосомнорецессивный

IVB

Синдром Моркио В (4)

+ +

+

+ +

+

+

+

V

резервный номер

IVA

Классическая форма синдрома Марото— —Лами (6)

+ +

+ +

+ +

+

+

+

Аутосомнорецессивный

VIB

Легкая форма синдрома Марото— —Лами (6)

+

+

+

+

+

+

VII

Скрытый мукополисахаридоз (7)

+

±

±

+

+ +

+

Аутосомнорецессивный

" Классификация Мак-Кьюсика (1972) с дополнениями. - отсутствует; + иногда наблюдается; + в легкой форме; + + средней тяжести; + + + в тяжелой форме. В скобках приведены обозначения генетических блоков, соответствующие рис. 4.11 и 4.12.

32 4. Действие генов

Таблица 4.6. Выделение сульфатированных гликозаминогликанов с мочой при мукополисахаридозах [1029]

Мукополисахаридоз

Выделяющийся гликозаминогликан

IH и IS

Дерматансульфат и гепарансульфат в соотношении 3:1

II

Дерматансульфат и гепарансульфат в соотношении 1:1

IIIА, IIIВ,

Гепарансульфат

IIIС, IIID

IVA, IVB

Кератансульфат и хондроитин6-сульфат

VI

Дерматансульфат, иногда также некоторое количество гепарансульфата (?)

VII

Дерматансульфат и, возможно, гепарансульфат

представление о выделении разнообразных гликозаминогликанов при различных синдромах. Природа выделяющихся веществ отражает характер метаболических нарушений (табл. 4.7).

Биохимия сульфатированных гликозаминогликанов. Сульфатированные гликозаминогликаны представляют собой сложные гетеросахариды, состоящие из длинных полисахаридных цепей, ковалентно связанных с белковым кором. Полисахаридные цепи дерматансульфата, гепарансульфата, хондроитин-4- и хондроитин-6-сульфата построены из чередующихся остатков глюкуроновой кислоты и сульфатированного гексозамина. Кератансульфат отличается от других гликозаминогликанов тем, что вместо глюкуроновой кислоты содержит остатки галактозы. Полимерные цепи насчитывают до 100 остатков. Они связаны с особым участком в молекуле специфического белка. К одной молекуле полипептида могут быть присоединены несколько полисахаридных цепей. Такие протеогликаны

Таблица 4.7. Дефекты метаболизма при мукополисахаридозах [1029]

Мукополисахаридоз 1)

Главное накапливающееся вещество

Дефектный фермент

IH

Синдром Хурлера

Дерматансульфат и гепарансульфат

α-L-идуронидаза

IS

Синдром Шайе

— »—

IH/S

Компаунд по синдромам Хурлера и Шайе

-»-

ПА

Тяжелая форма синдрома Хантера

Дерматансульфат и гепарансульфат

Идуронатсульфатаза

IIВ

Легкая форма синдрома Хантера

-»-

—» —

IIIА

Синдром Санфилиппо А

Гепарансульфат

Гепаран-N-сульфатаза

IIIВ

Синдром Санфилиппо В

a-N-ацетилглюкозаминидаза

IIIС

Синдром Санфилиппо С

а-глюкозаминидаза (?)

IIID

Синдром Санфилиппо D

N-ацетилглюкозамин-6-сульфатаза

Синдром Моркио А

Кератансульфат

N-ацетилгалактозамин-6-сульфатаза

IVB

Синдром Моркио В

Р-галактозидаза

VIA

Классическая форма синдрома Марото—Лами

Дерматансульфат

М-ацетилгалактозамин-4-сульфатаза (арилсульфатаза В)

VIB

Легкая форма синдрома Марото—Лами

— » —

VII

Скрытый мукополисахаридоз

Дерматансульфат и гепарансульфат

β-глюкуронидаза

1) Классификация Мак-Кьюсика (1972) с дополнениями.

4. Действие генов 33

Рис. 4.9. Димер L-идуроновой кислоты и N-ацетилгалактозамин-4-сульфата в дерматансульфате.

способны образовывать и более крупные комплексы благодаря нековалентным связям. Содержание различных Сахаров в полисахаридных цепях и степень их сульфатирования могут значительно варьировать.

Например, большая часть полисахаридной цепи дерматансульфата построена из повторяющихся димеров Lидуроновой кислоты и N-ацетил-галактозамин-4-сульфата (рис. 4.9). Другие гликозаминогликаны имеют сходное строение. Они являются компонентами соединительной ткани и основного вещества, заполняющего пространство между клетками.

У больных мукополисахаридозами основу структуры гликозаминогликанов соединительной ткани составляют те же крупные протеогликановые образования, которые обнаруживаются и в норме. Отсюда следует, что их синтез не нарушается в результате дефекта фермента. В тканях, где наблюдается аномальное отложение гликозаминогликанов, а также в моче эти молекулы варьируют по длине и имеют меньшие размеры. Это позволяет предполагать, что в клетках происходит расщепление максимально возможного числа связей перед тем, как процесс блокируется из-за дефекта специфического фермента, необходимого для отщепления очередного остатка.

Ферментативные дефекты. Наиболее прямым подходом к исследованию нарушений метаболизма служит поиск соединений, метаболизм которых осуществляется неправильно, и измерение активности ферментов, участвующих в его превращении. Именно таким способом были изучены уже рассмотренные дефекты эритроцитов. Исследования же мукополисахаридозов были затруднены, поскольку не были известны ни детали химической структуры соответствующих гликозаминогликанов, ни ферменты, осуществляющие в норме их катаболизм. Систематическое изучение стало возможным лишь тогда, когда выяснилось, что в культурах фибробластов из кожи больных с синдромами Хантера или Хурлера накапливаются гликозаминогликаны. Важнейшим этапом следует считать доказательство того, что in vitro (в культуре) накопление может быть уменьшено до нормы под действием корректирующего фактора из тканевой жидкости. Впервые это было показано в 1968 г. Неуфельдом и др. [1240]. На основании различий в типе наследования – синдром Хурлера передается потомкам как аутосомнорецессивный признак, а синдром Хантера сцеплен с Х-хромосомой - можно было предположить, что эти заболевания генетически различны, т. е. мутации затрагивают разные реакции расщепления мукополисахаридов. Если бы можно было осуществить слияние ядер клеток, взятых у больного с синдромом Хурлера и у больного с синдромом Хантера (как это было сделано для многих различных типов клеток в работах по генетике соматических клеток), это должно было бы привести к взаимной комплементации дефектов. В ходе решения этой задачи выяснилось, что проблема значительно проще и в слиянии клеток нет необходимости. Для компенсации дефектов, присущих синдромам Хурлера и Хантера, достаточно смешать соответствующие клетки в культуре или даже к клеткам одного генотипа добавить культуральную жидкость, в которой росли клетки другого генотипа. Накопление мукополисахаридов измеряли по включению 35SO4. На рис. 4.10 показаны результаты этих опытов. Компенсация одного из дефектов (синдрома Хурлера) достигалась с использованием как нормальных клеток, так и клеток с другим дефектом (синдромом Хантера) [1086].

В последующие годы подобные эксперименты были выполнены и для других клинических типов, а обнаруженные кор-

34 4, Действие генов

Рис. 4.50. Аномальное включение 35SO4 в клетки больных с синдромами Хурлера и Хантера. При смешивании нормальных клеток с клетками больных одним из синдромов включение 35SO4 уменьшается. Такой же результат можно наблюдать при смешивании клеток пациентов, страдающих разными синдромами. Уровень включения при этом близок к норме [1086].

ректирующие факторы охарактеризованы биохимически. Оказалось, что фибробласты больных с синдромом Санфилиппо образуют по меньшей мере две группы, А и В, в которых дефектными являются различные факторы, поэтому клетки групп А и В способны к взаимной коррекции. Таким образом, синдром Санфилиппо генетически неоднороден. С другой стороны, несмотря на глубокие различия в клинической картине синдромов Хурлера и Шайе, фибробласты, взятые у соответствующих больных, дефектны по одному и тому же фактору.

Вскоре было показано, что все корректирующие факторы представляют собой специфические белки. Более подробный анализ показал, что это лизосомные ферменты, участвующие в расщеплении сульфатированных гликозаминогликанов. Важную роль в выяснении механизмов подобных дефектов сыграли и современные представления о структуре этих соединений, и анализ функций корректирующих факторов, и прямые эксперименты по идентификации поврежденных ферментов.

Предполагалось, что при этих нарушениях дефектными являются ферменты, специфически расщепляющие различные типы связей в молекулах гликозаминогликанов. Предсказания на основе этой гипотезы подтверждались экспериментально. Например, при инкубации корректирующего фактора Санфилиппо А (25290) in vitro с гепарансульфатом, выделенным из фибробластов больного с синдромом Санфилиппо и меченным 35SO4, наблюдалось освобождение неорганического сульфата. Дальнейшие исследования показали, что фактор действует на N-сульфатную связь гепарансульфата [1175]. При инкубации in vitro с гепарансульфатом или дерматансульфатом, полученными из фибробластов больного с синдромом Хантера и меченными 35SO4, корректирующий фактор Хантера также катализирует выделение неорганического сульфата. Ген, детерминирующий мукополисахаридоз формы Хантера, сцеплен с Х-хромосомой, поэтому соответствующий дефект фермента должен отличаться от дефекта при синдроме Санфилиппо А. Поскольку общим свойством обоих гликозаминогликанов является случайное распределение сульфатированных остатков идуроновой кислоты, было выдвинуто предположение, что корректирующий фактор Хантера может быть сульфатазой. Это предположение подтвердилось в опытах с искусственным субстратом.

Другой подход к изучению природы ферментативного блока заключается в определении концевых остатков полисахаридных цепей, которые накапливаются при заболевании. Например, было показано, что при синдроме Хантера концевой остаток накапливающегося дерматансульфата представляет собой сульфатированный остаток идуроновой кислоты. Это хорошо согласовывалось с предположением о дефекте сульфатазы, на что указывали опыты с искусственным субстратом. Был сделан вывод, что в норме гликозаминогликаны расщепляются поэтапно и этот процесс

4. Действие генов 35

останавливается, если отсутствует фермент, ответственный за очередной этап. Последовательность моносахаридных остатков в цепи варьирует; такой характер расщепления делает объяснимым тот факт, что накапливающиеся при этих заболеваниях полисахаридные цепи имеют разную длину.

Эти же методы использовали для изучения дефектов других ферментов. Во всех случаях концевые остатки содержали связь, для которой не было соответствующего фермента. Природа ферментативных дефектов позволила объяснить и другое свойство накапливающегося материала: единичное нарушение приводит к накоплению химически неидентичных молекул. Например, у больных с синдромом Хурлера накапливается как дерматансульфат, так и гепарансульфат. Оба соединения содержат остатки a-L-идуроновой кислоты. Поэтому дефект фермента, который строго специфичен в отношении этого остатка, вызывает накопление обоих типов содержащих его полисахаридов.

Обобщенные результаты ряда исследований представлены для хондроитина и дерматансульфата на рис. 4.11, а для гепарансульфата и кератансульфата на рис. 4.12. Указаны ферменты, для которых установлены генетические дефекты, перечисленные в табл. 4.7.

Нарушения ферментов и генетическая гетерогенность. В разд. 3.3.5 на примере мышечной дистрофии продемонстрирован анализ генетической гетерогенности с использованием генетических данных (различных типов наследования), а также клинических данных (возраст начала заболевания, характер проявления, тяжесть симптомов и др.). При изучении мукополисахаридозов такой анализ продемонстрировал выраженную межсемейную вариабельность всех этих показателей, между тем внутри каждой семьи проявления были обычно сходными. Поэтому казалось логичным выделить различные генетические типы, что и было сделано еще до исследования ферментативных нарушений. Интересно, как эта классификация, основанная на косвенных данных по изучению фенотипа, согласуется с прямыми данными, полученными при анализе ферментативных нарушений?

В целом соответствие оказалось вполне удовлетворительным (табл. 4.5 и 4.7). Однако имеются два исключения.

1. Согласно клиническим данным, синдром Санфилиппо следует рассматривать как единое заболевание. Было показано, однако, что он может быть обусловлен четырьмя различными ферментативными дефектами. Такая ситуация характерна для многих дефектов метаболизма. Нарушения различных реакций одного и того же пути часто приводят к одинаковой клинической картине. Например, различные дефекты гликолиза вызывают несфероцитарную гемолитическую анемию (разд. 4.2.2.2).

2. С другой стороны, синдромы Хурлера и Шайе сильно различаются: последний протекает значительно легче. Тем не менее оказалось, что в основе обоих заболеваний нарушение одного и того же фермента. Как объяснить этот факт? Весьма возможно, что данный фермент состоит из нескольких полипептидных цепей. Мутации, вызывающие синдромы Хурлера и Шайе, могут затрагивать различные цепи и детерминировать разный уровень остаточной активности фермента. До сих пор, однако, не найдено никаких различий в остаточной активности a-L-идуронидазы в фибробластах больных с синдромами Хурлера и Шайе. Можно предположить и другие механизмы, исходя, например, из результатов генетического анализа гемоглобинов (разд. 4.3).

Изучение генетической гетерогенности мукополисахаридозов еще не проводилось. Однако нет оснований предполагать, что в этом случае различия между мутациями окажутся менее явными, чем те, которые обнаружены для G6PD. Мутантные аллели, которые несет данный, конкретный больной, страдающий аутосомно-рецессивным заболеванием, могут оказаться идентичными. Так бывает, если родители являются родственниками, например двоюродными, или в генетически изолированных популяциях (разд. 6.4.1). Однако в большинстве других случаев мутации, обнаруживаемые у больного,

36 4. Действие генов

Рис. 4.11, 4.12. Помимо мукополисахаридозов, рассмотренных в тексте, известны и другие дефекты, приводящие к муколипидозам (болезнь Зандхоффа; ганглиозидоз М II). (По Kresse et al., Klin Wochenschr, p. 870/71, 1981).

Рис. 4.11.А. Схематическое изображение структуры и катаболизма хондроитинсульфата. Последовательное расщепление начинается с невосстанавливающего конца (слева). Названия болезней, обусловленных потерей активности ферментов, приведены в скобках. GlcUA, глюкуроновая кислота; GalNAc, N-ацетилгалактозамин; S, SO3H. Б. Схематическое изображение структуры и катаболизма дерматансульфата. Детали см. на рис. 4.11. A. IdUA, идуроновая кислота.

Рис. 4.12.А. Схематическое изображение структуры и катаболизма гепарансульфата. Детали см. на рис. 4.11. A. GlcN, глюкозамин; GlcNAc, N-ацетилглюкозамин, ldUA, идуроновая кислота. Б. Схематическое изображение структуры и катаболизма кератансульфата. Детали см. на рис. 4.11. A. Gal, галактоза; GlcNAc, N-ацетилглюкозамин.

4. Действие генов 37

имеют различное происхождение, и поэтому маловероятно, что они идентичны. Если термин «гомозигота» использовать строго для обозначения индивидов с абсолютно идентичными мутациями, многих или даже большинство больных рецессивными заболеваниями следует признать негомозиготными. Их можно назвать «составными гетерозиготами» (рис. 3.12). Описан ряд случаев, по клиническим проявлениям промежуточных между синдромами Хурлера и Шайе [1312]. Было показано, что в фибробластах отсутствует корректирующий фактор Хурлера. Некоторые из таких больных действительно могли быть составными гетерозиготами с аллелями Хурлера и Шайе. Однако по меньшей мере в четырех случаях родители больных были родственниками. Возможно существование и третьего аллеля с промежуточным фенотипическим проявлением, поскольку в семьях, где происходит сегрегация двух различных аллелей, заболевание нельзя объяснить последствиями близкородственных браков.

Дифференциальная диагностика и лечение мукополисахаридозов. Если на основании клинических данных подозревается мукополисахаридоз, предполагаемый диагноз должен быть подтвержден обнаружением в моче избыточных сульфатированных гликозаминогликанов. Для этого в настоящее время разработаны соответствующие методы [1312]. Окончательный диагноз, однако, требует выявления дефектного фермента в культуре фибробластов, в лейкоцитах или, в случае некоторых ферментов, в сыворотке [1029]. Если ген экспрессируется в клетках амниотической жидкости, возможна и пренатальная диагностика (разд. 9.1.1). В этом случае либо измеряют накопление радиоактивных гликозаминогликанов, либо определяют природу дефекта фермента. Однако, поскольку количество амниотических клеток, которые удается культивировать, ограниченно, оказывается возможным определить активность лишь нескольких ферментов. Вот почему пренатальной диагностике должно предшествовать скрупулезное энзимологическое исследование больного сибса. Такой предварительный анализ позволяет измерять в клетках амниотической жидкости активность только того фермента, который оказывается дефектным у этого сибса.

Известно, что при определенных обстоятельствах ферменты могут поглощаться дефектными клетками, что приводит к коррекции дефекта. Этот факт свидетельствует о возможности ферментной терапии. Однако до сих пор не удавалось получить достаточно очищенных ферментов, а переливания больших количеств лейкоцитов или сыворотки приводили лишь к незначительному улучшению, в большинстве же случаев результаты были сомнительными. Поглощение клеткой лизосомного фермента является высокоспецифичным процессом, в котором участвует определенный маркерный участок, распознаваемый в полипептидной молекуле фермента; он может быть разным для разных тканей [1240]. Тем не менее этот подход представляется многообещающим.

Дефект маркера для распознавания лизосомных гидролаз [1242]. В 1967 г. Де Марс и Лерой обнаружили «странные» клетки в культуре фибробластов кожи, взятых у

38 4 Действие генов

больного с предполагаемым синдромом Хурлера. Эти клетки имели плотные включения, выявляемые с помощью фазовоконтрастной микроскопии и содержащие кислую фосфатазу. Заболевание назвали I-клеточной болезнью (от английского inclusion-включение). По клиническому проявлению она напоминает синдром Хурлера, но протекает тяжелее и наследуется как аутосомно-рецессивный признак Оказалось, что фибробласты таких больных дефектны по Р-гексозаминидазе, арилсульфатазе А, β-глюкуронидазе, в то же время в культуральной жидкости перечисленные ферменты присутствуют в повышенной концентрации. Чтобы объяснить этот факт, было высказано предположение, что фибробласты больных имеют дефектную клеточную мембрану, однако впоследствии оказалось, что in vitro лизосомы клеток больных поглощают и накапливают нормальные ферменты с нормальной скоростью. В то же время гидролазы из I-клеток не поглощаются нормальными клетками. Следовательно, изменены сами молекулы этих ферментов. Было установлено, что они лишены маркера, необходимого для распознавания при эндоцитозе, т. е. маннозо-6-фосфата. В норме остатки маннозо-6-фосфата присоединяются к ферменту после завершения его синтеза. Они служат сигналом, позволяющим ферменту связываться с рецептором маннозо-6-фосфата, который обеспечивает транспорт лизосомных ферментов в лизосомы, где происходит их активация. В результате нарушения какого-то фермента, участвующего в процессинге лизосомных ферментов, большинство их при I-клеточной болезни лишены маннозо-6-фосфата. Это приводит к тому, что ферменты из клеток секретируются в плазму, а не транспортируются по рецептор-зависимому пути в лизосомы (рис 4 13). Множественные клинические симптомы I-клеточной болезни можно объяснить одним дефектом процессинга, при котором нарушается присоединение к ферментам маркера - маннозо-6-фосфата.

Поскольку участок узнавания является общим для ряда ферментов, I-клеточная болезнь служит примером патологического состояния, при котором дефект одного гена приводит к недостаточности нескольких ферментов. Подобные множественные эффекты могут иметь и другие причины.

Рис. 4.13. Схематическое изображение цикла секреции и обратного поглощения гидролитических ферментов лизосом нормальными и мутантными клетками, растущими в культуре. Специфические рспепторные белки, расположенные на поверхности плазматической мембраны всех трех клеток, позволяют им поглощать и транспортировать в лизосомы гидролитические ферменты. Клетки при синдроме Хурлера не способны синтезировать α-L-идуронидазу однако этот дефект можно скомпенсировать добавлением фермента к среде. В случае I-клеточной болезни присут ствуют все ферменты, однако они лишены маркера, необходимого для их распознавания при поглощении и транспорте в лизосомы.

4 Действие генов 39

4.2.2.4 Одновременные нарушения нескольких ферментов

До сих пор во всех случаях - будь то механизм выработки энергии в эритроцитах или катаболизм гликозаминогликанов - рассматривались примеры, при которых одна мутация приводила к изменению или недостаточности единственного фермента. Все это согласуется с гипотезой «один ген - один фермент». Однако известны случаи, когда одна мутация приводит к изменению двух ферментов. Например, активность одного фермента может нарушаться в результате дефекта другого. Так, активность глюкозо-6-фосфатазы при болезни накопления гликогена III типа (23240) уменьшается в результате нарушения амино-1,6-глюкозидазы - фермента, который расщепляет гликоген в точках ветвления молекулы. Изменение структуры фермента представляется маловероятным, поскольку стероиды, обладающие кортизоно-подобным эффектом, вызывают в таких случаях нормализацию активности глюкозо-6-фосфатазы [1199].

Другие случаи, при которых два фермента изменены структурными мутациями, а у гетерозигот их активность примерно в два раза ниже нормы, не удается объяснить таким способом. Вполне возможно, что указанные ферменты имеют общую субъединицу.

Рис. 4.14. Аминокислоты с разветвленной боковой цепью.

Кетоацидурия, обусловленная дефектом метаболизма аминокислот с разветвленной боковой цепью (болезнь «кленового сиропа») [196]. Известно рецессивное нарушение, которое затрагивает не менее трех функционально родственных ферментов,- болезнь «кленового сиропа». Она вызвана дефектом расщепления аминокислот с разветвленной боковой цепью: лейцина, изолейцина и валина (рис. 4.14). Генетический блок показан на рис. 4.15. При наиболее частой классической форме болезни в течение первой недели после рождения наблю-

Рис. 4.15. Предполагаемая ферментативная система метаболизма аминокислот с разветвленной боковой цепью содержит общий компонент (А). Эта полипептидная цепь может объединяться с тремя различными полипептидами (В, С, D), образуя три фермента (АВ, АС и AD). Мутационное изменение общей субъединицы приводит к генетическому блоку метаболизма сразу трех аминокислот и вызывает кетоацидурию. Известны редкие случаи дефектов полипептидов В и D.

40 4 Действие генов

даются затруднение с сосанием, рвота, гипертонус мышц и пронзительные крики. Иногда имеют место потеря тонуса и задержка дыхания (возможно, вследствие гипогликемии). Позже утрачиваются рефлексы, появляются частые припадки, возможна смерть в раннем возрасте. Дети, которые не получали лечения и тем не менее выжили, страдают тяжелой умственной отсталостью [182]. Помимо этого классического типа, описаны «промежуточная», «легкая» и тиамин-зависимая формы болезни.

Анализ генетического блока показал, что активность трансаминаз, которые превращают эти аминокислоты в соответствующие кетокислоты, не изменена (рис. 4.15). Оказалось, что нарушена следующая стадия - окислительное декарбоксилирование. По-видимому, она обеспечивается тремя различными мультиферментными комплексами. Установлено, что эти комплексы имеют один идентичный компонент, который и затрагивает мутация, вызывающая заболевание. При промежуточной форме заболевания наблюдаются периоды атаксии и повышения концентрации аминокислот с разветвленной боковой цепью и соответствующих кетокислот, в особенности при инфекционных заболеваниях. В остальное время показатели крови находятся в пределах нормы, но у больных наблюдаются неврологические отклонения. У одного ребенка при этом заболевании описана остаточная активность фермента, составляющая около 210% нормы. Сходные дефекты описаны в работе [1287].

Другие дефекты метаболизма, при которых нарушена активность нескольких ферментов [196]. Другим примером дефекта метаболизма, при котором один генетический блок затрагивает два фермента в одной и той же цепи реакций, служит оротоацидурия (25890), при которой нарушено образование одного из предшественников РНК, уридина, из оротовой кислоты. На рис. 4.16 показаны два генетических блока. У гетерозигот активность обоих ферментов снижена приблизительно вдвое. Это исключает зависимость активности одного фермента от другого и свидетельствует в пользу участия продукта одного и того же гена в обеих реакциях. По меньшей мере в одном случае было установлено, что у гомозиготы второй фермент - декарбоксилаза - имеет измененную электрофоретическую подвижность, а значит, и структуру. Оказалось, что каждая реакция осуществляется одним из двух независимых доменов макромолекулы, которая представляет собой единую полипептидную цепь [1145]. С другой стороны, показано, что при ганглиозидозе Зандхоффа одновременное нарушение активности гексозаминидаз А и В обусловлено мутацией, изменяющей общую для этих ферментов (3-субъединицу [1286].

Описан ряд случаев одновременной недостаточности факторов свертывания крови II, VII, IX и X, зависимых от витамина К. Они вызваны дефектом посттрансляционной модификации [1111b].

Новый взгляд на гипотезу «один ген - один фермент» (или «один ген - одна полипептидная цепь») [1088]. Как уже отмечалось, дефекты единичных генов человека могут нарушать активность сразу нескольких ферментов, что объясняется наличием у этих ферментов общих субъединиц. Это структурные мутации.

Рис. 4.16. Два генетических блока двух последовательных этапов биосинтеза пиримидинового основания урацила. Оба блока проявляются как оротоацидурия.

4. Действие генов 41

Другой важный аспект синтеза ферментов связан с посттрансляционным процессингом. Например, сахарозоизомальтаза построена из двух полипептидных цепей, каждая из которых обладает ферментативной активностью. Эти полипептиды образуются из единого предшественника в результате протеолитического расщепления [1297]. Для образования активного инсулина также необходим процессинг проинсулина.

Весьма убедительные доказательства процессинга пептидов получены для ряда мелких пептидов, синтезирующихся в мозге, - энкефалинов и эндорфинов. В этом случае одна и та же молекула предшественника в результате процессинга может расщепляться на различные пептиды в зависимости от типа клеток или стадии их развития, что может служить одним из механизмов дифференцировки при эмбриональном развитии. На рис. 4.17 показана молекула препродинорфина и ее процессинг с образованием различных типов энкефалинов, эндорфинов и динорфинов. Функции этих белков будут кратко рассмотрены в гл. 8. Подобный посттрансляционный процессинг описан для других гормонов и нейропептидов, синтезирующихся главным образом в гипофизе и гипоталамусе.

Модификации, важные для функционирования молекул, происходят не только на посттрансляционном уровне, но и на уровне экспрессии гена; они могут изменить даже сам ген. Подобная модификация установлена для генов иммуноглобулинов (разд. 4.4). Однако эти факты не умаляют эвристической ценности гипотезы «один ген - один фермент», которая в большинстве случаев верна.

Нарушение работы сразу нескольких ферментов в результате одной мутации может наблюдаться в особых случаях, например если нарушено поглощение, транспорт или связывание кофакторов.

4.2.2.5. Влияние кофакторов на активность ферментов [182]

Кофакторы ферментов. Активность многих ферментов зависит от присутствия молекул небелковой природы - кофакторов. В их роли могут выступать простые ионы, например Mg2+, или органические соединения. Если кофактор представляет собой сложное соединение, его называют коферментом. Предшественники коферментов (витамины) потребляются с пищей. Как правило, витамины участвуют во многих ферментативных реакциях, и их недостаток в пище вызывает в организме состояние, называемое авитаминозом.

Ослабление функции кофермента может быть связано и с генетическими дефектами

Рис. 4.17. Препродинорфин (белок). Leu-энкефалин: L = Туг, Gly, Gly, Phe, Leu; нео-эндорфин: L + Arg, Lys, Tyr, Pro; нео-эндорфин; L + Arg, Lys, Tyr, Pro + Lys; динорфин 1 -8: L + Arg, Arg, He; динорфин 1–17:L + Arg, Arg, Ile + Arg, Pro, Lys, Leu, Lys, Trp, Asp, Asn, Gln. За сигнальной последовательностью, расположенной на N-конце, следует последовательность, обогащенная остатками цистина. Последовательности нейрогормонов расположены вблизи С-конца; они вырезаются из молекулы препродинорфина. Поскольку молекулы эндорфинов и динорфинов крупнее, чем Leu-энкефалинов, логично предположить, что сплайсинг осуществляется в две (по крайней мере) стадии. На первой стадии образуются более длинные молекулы. Затем они подвергаются процессингу с образованием Leuэнкефалинов. (По Frezal et al., 1983.)

42 4. Действие генов

Рис. 4.18. Мутации могут нарушать витамин-зависимые реакции на разных этапах, от транспорта витамина в клетку до образования активного фермента [182].

Рис. 4.19.Фолиевая кислота. Ее молекула состоит (слева направо) из птеринового кольца, β-аминобензойной кислоты и глутаминовой кислоты.

поглощения и утилизации витаминов (рис. 4.18). Известно, что витамины всасываются в кишечнике, транспортируются в клетки, где попадают в специфические органеллы. Именно там происходит превращение в кофермент, который в свою очередь должен соединиться с апоферментом с образованием холофермента. Любой из этих этапов может быть нарушен в результате мутации. Механизм поглощения детально изучен для витамина В12 (кобаламина) и фолиевой кислоты; для обоих описаны нарушения транспорта и синтеза кофермента.

Зависимость от фолиевой кислоты (22903, 24930, 22905): нарушение транспорта и синтеза кофермента. Молекула фолиевой кислоты построена из трех компонентов - птеринового кольца, парааминобензойной кислоты и глутаминовой кислоты (рис. 4.19). Фолиевая кислота обычно присутствует в различных продуктах питания в достаточных количествах. Известно пять коферментных форм фолата. Все они участвуют в переносе группировок с одним атомом углерода при синтезе нуклеотидов, метионина, глутаминовой кислоты и серина. Основные этапы поглощения и синтеза витамина следующие

Этап

Фермент

1. Превращение полиглутаминовой кислоты в глутаминовую кислоту

Конъюгирующий фермент (слизистая кишечника, желудок, поджелудочная железа)

2. Поглощение посредством активного транспорта

Двенадцатиперстная кишка и тощая кишка (механизм в точности не известен)

3. Транспорт в ткани

4. Превращение фолата в коферменты: а) восстановление птеринового кольца - образование тетрагидрофолата;

б) образование пяти различных коферментов

Пять различных ферментативных реакций

Тетрагидрофолат (ТГФ) выполняет две различные функции:

1. Он служит акцептором β-углеродного атома серина при его расщеплении до глицина. Этот атом углерода формирует

4. Действие генов 43

Таблица 4.8. Врожденные нарушения метаболизма фолиевой кислоты [182]

Локализация нарушения

Природа дефекта

Проявление дефекта

Потребность в фолате in vivo

концентрация фолата в сыворотке

мегалобластная анемия

нарушение функций ЦНС 1)

Всасывание в кишечнике

Не установлена

Низкая

Наблюдается

Наблюдается

Нормальная

Утилизация в тканях

Недостаточность формиминотрансферазы

Высокая

Не наблюдается

»

Повышена

Недостаточность циклогидролазы

»

»

»

2)

Недостаточность дигидрофолатредуктазы

Нормальная

Наблюдается

Не наблюдается

Повышена

Недостаточность N5, N10-метилтетрагидрофолатредуктазы

От низкой до нормальной

Не наблюдается

Наблюдается

Повышена

1) Включает умственную отсталость, психозы, припадки, отклонения в ЭЭГ, атрофию коры головного мозга.

2) Не определялась

метиленовый мостик между 5-м и 10-м атомами азота ТГФ с образованием N5,N10-метил-ТГФ, который восстанавливается до N5-метил-ТГФ. 2. ТГФ может превращаться также в N5,N10-метил-ТГФ – предшественник формильной формы кофермента. Формильная и метильная формы кофермента необходимы для ряда реакций переноса группировок с одним атомом углерода при синтезе пуринов, пиримидинов и метионина, а также для циклических превращений производных самой фолиевой кислоты.

Описано по меньшей мере пять наследственных патологических состояний, связанных с недостаточностью транспортных механизмов или механизмов образования коферментов (табл. 4.8). Часть из них характеризуются грубым нарушением функций центральной нервной системы, в том числе умственной отсталостью, в двух случаях наблюдается мегал областная анемия. Общее их свойство заключается в возможности успешного лечения при своевременной постановке диагноза. Например, при нарушении всасывания в кишечнике потребность в фолиевой кислоте не повышена, этот дефект корректируется внутримышечными инъекциями витамина. В трех из четырех известных случаев дефектов ферментов при увеличении количества потребляемой фолиевой кислоты болезнь протекала легче. Однако диагноз был поставлен слишком поздно, поэтому неясно, можно ли предотвратить нарушения центральной нервной системы, если начать лечение достаточно рано.

Вероятно, аномально низкое поглощение или снижение синтеза кофермента оказывают влияние одновременно на многие ферменты, именно на те, для работы которых необходим этот кофермент. С другой стороны, недостаточность на последнем этапе, когда нарушена способность апофермента, связываясь с коферментом, образовывать холофермент, должна приводить к дефекту только одного фермента. Такие нарушения подобны обычным случаям ферментативной недостаточности, рассмотренным ранее.

Зависимость от пиридоксина (витамина В6) (26610). Молекула витамина В6 представляет собой замещенное пиридиновое кольцо. Известно несколько природных

44 4. Действие генов

Рис. 4.20. Витамин В6 (пиридоксин).

форм витамина В6, которые содержатся в самых различных пищевых продуктах (рис. 4.20). Попадая в клетки, предшественники фосфорилируются специфической киназой до пиридоксаль-5'-фосфата или пиридоксамин-5'-фосфата. Эти фосфорилированные производные играют роль коферментов в многочисленных реакциях биосинтеза аминокислот, гликогена, а также жирных кислот с малой длиной цепи. В табл. 4.9 перечислено шесть наследственных патологий, связанных с генетически обусловленной недостаточностью витамина В6. Во всех этих случаях для биохимического и (или) клинического эффекта требуются дозы витамина В6, которые превышают физиологические в 5-50 раз.

В первой строке табл. 4.9 описывается патология, впервые обнаруженная у двух сибсов. Они страдали от припадков, которые не удавалось снять противоэпилептическими препаратами. Судороги, однако, проходили при парентеральном введении высоких доз пиридоксина, которые необходимо было поддерживать у таких больных для предупреждения припадков [182].

В настоящее время обнаружено большое число подобных случаев. Установлено, что заболевание обусловлено нарушением глутаматдекарбоксилазы.

Аналогичные результаты получены при цистатионинурии и ксантуроацидурии. С другой стороны, в многочисленных случаях гомоцистинурии (23620), вследствие недостаточности цистатионин-синтазы чувствительность к витамину В6 не удается объяснить мутацией, изменяющей сродство к коферменту. Точный механизм взаимодействия при этом заболевании остается неизвестным [182].

Помимо упомянутых выше, описан ряд случаев, при которых высокие дозы витамина вызывали улучшение клинического и биохимического состояния больных. Дальнейший анализ этой группы заболеваний должен прояснить механизмы связывания коферментов и их действия и представляет поэтому теоретический интерес. Важен он и для медицинской практики, поскольку подобные патологические состояния поддаются лечению высокими дозами витаминов.

Существует мнение, что эта концепция, обоснованная на примере немногочисленных редких врожденных нарушений метаболизма, применима и к ряду широко распространенных заболеваний, в частности к шизофрении. Так, согласно новому направлению в психиатрии, известному под названием «ортомолекулярная психиатрия», шизофрения обусловлена витаминной недостаточностью и положитель-

Таблица 4.9. Врожденные аминоацидопатии с выраженной недостаточностью витамина В6 [182]

Нарушение

Главные клинические симптомы

Поврежденный апофермент

Младенческие судороги

Припадки

Глутаматдекарбоксилаза

Анемия, зависимая от пиридоксина

Мелкоклеточная гипохромная анемия

Не установлен

Цистатионинурия

Вероятно, нет

Цистатионаза

Ксантуроацидурия

Умственная отсталость (?)

Кинурениназа

Гомоцистинурия

Эктопия хрусталика, тромбоз кровеносных сосудов; нарушение функций ЦНС

Цистатионин-синтаза

Гипероксалурия

Отложение в почках кристаллов оксалата кальция; почечная недостаточность

Глиоксилат: а-кетоглутараткарбоксилаза

4. Действие генов 45

ного эффекта при лечении можно достичь, вводя высокие дозы никотиновой кислоты. Научное обоснование этого утверждения, в настоящее время практически отсутствует.

4.2.2.6. Сцепленная с Х-хромосомой недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы (30800) [7055]

Дефекты ферментов и их роль в изучении механизмов действия генов. Некоторые дефекты ферментов сыграли заметную роль в изучении самых общих вопросов, касающихся действия генов и возникновения мутаций. Особенно важные результаты были получены при исследовании нарушений метаболизма пуринов, обусловленных недостаточностью гипоксантин-гуанин—фосфорибозилтрансферазы (HPRT) (рис. 4.21) [1294].

Синдром Леша-Найхана [1293]. В 1964 г. Леш и Найхан описали специфический синдром [1198], характеризующийся

Рис. 4.21. Известные дефекты метаболизма пуринов у человека. (1) Повышенная активность фосфорибозилпирофосфат —синтетазы у больных с избыточным синтезом мочевой кислоты и подагрой. (2) Почти полная недостаточность гипоксантин-гуанин — фосфорибозилтрансферазы (HPRT) у детей с синдромом Леша—Найхана и частичная недостаточность этого фермента у больных с избыточным синтезом мочевой кислоты при подагре. (3) Недостаточность аденинфосфорибозилтрансферазы (APRT) у больных с камнями в почках. В этом случае камни состоят из 2,8-диоксиаденина (не путать с мочекислыми камнями). (4) Недостаточность ксантиноксидазы у больных ксантонурией, для которых повышен риск образования камней в мочевыводящих путях и, в некоторых случаях, риск миалгии, обусловленной присутствием кристаллов ксантина в мышцах. (5) Недостаточность аденозиндезаминазы, связанная с общей тяжелой иммунной недостаточностью. (6) Недостаточность пуриннуклеозидфосфорилазы, связанная с дефектом Т-лимфоцитов. (7) Активность пурин-5-нуклеозидазы снижена в лимфоцитах больных агаммаглобулинемией, которая может быть вторичной при утрате В-клеток. (8) Недостаточность аденозинкиназы до сих пор наблюдалась только в культурах лимфобластов человека. Соответствующее заболевание еще предстоит идентифицировать. (9) Недостаточность миоаденилатдезаминазы у некоторых больных связана с явлениями слабости и судорогами в мышцах после сильных нагрузок, а также с отсутствием повышения концентрации ионов аммония в венозной крови в ответ на мышечные нагрузки [1294]. Эти дефекты ферментов служат замечательными примерами более, а часто менее характерных фенотипических последствий различных генетических блоков в единой цепи реакций.

46 4. Действие генов

атетозом, гиперрефлексией и непременным самодеструктивным поведением, которое может выражаться даже в откусывании губ и пальцев [1164]. У всех пациентов (болеют только мальчики) наблюдается гиперурикемия и повышенная концентрация мочевой кислоты в моче, что приводит к образованию камней в почках и закупорке мочевых путей. Признак сцеплен с полом (разд. 3.1.4). Гетерозиготы клинически здоровы, однако поддаются выявлению.

В 1967 г. Сигмиллер и др. [1295] при обследовании больных с синдромом Леша - Найхана обнаружили практически полную недостаточность одного из ферментов метаболизма пуринов - гипоксантин-гуанин—фосфорибозилтрансферазы (HPRT) (у трех больных - в лизатах эритроцитов, у одного больного - в культуре фибробластов). Впоследствии дефект фермента был выявлен во многих тканях: печени, лейкоцитах и в мозге. Инозин-5'монофосфат образуется в нескольких реакциях, принадлежащих к разным метаболическим путям. Однако клетки могут использовать также готовые пуриновые основания и нуклеозиды, образующиеся при расщеплении нуклеиновых кислот. В этом пути «использования вторичного сырья» свободные пуриновые основания превращаются в соответствующие 5'-мононуклеотиды. Имеются два фермента, один специфичен для гипоксантина, второй для аденина (рис. 4.21). Если первый фермент дефектен, то вторичного использования гипоксантина и гуанина не происходит, вместо этого они превращаются в мочевую кислоту. В результате развивается гиперурикемия с образованием камней в почках; однако остается неясным, чем обусловлены симптомы со стороны ЦНС. Дефекты HPRT удобно изучать в культуре фибробластов, вот почему этот фермент использовали в качестве модели при решении ряда проблем.

Гетерогенность на молекулярном уровне. В разных семьях обычно встречаются различные мутации. Об этом свидетельствуют результаты изучения таких характеристик фермента, как остаточная активность, константа Михаэлиса—Ментен, термолабильность, ингибирование конечными продуктами - GMP и IMP и других. Иногда выраженная недостаточность HPRT имела место и в отсутствие признаков синдрома Леша-Найхана. Дефектная гипоксантингуанин—фосфорибозилтрансфераза была выявлена у некоторых взрослых больных подагрой [1162; 1294]. Однако подавляющее большинство людей, страдающих этим заболеванием, обладают нормальной HPRT. У тех немногих больных подагрой, которые имеют дефектный фермент, этот признак наследуется сцепленно с Х-хромосомой. Это еще раз указывает, что мутации действительно затрагивают один и тот же локус.

Доказательства инактивации Х-хромосомы. Одно из наиболее убедительных доказательств гипотезы Лайон (разд. 2.2.3.3) было получено при изучении активности фермента на уровне отдельных клеток у гетерозигот с мутациями по HPRT [1164]. Более того, эти исследования позволили по-новому взглянуть на метаболические взаимоотношения между клетками.

Метаболическая кооперация. Изучение культуры фибробластов кожи дает возможность идентифицировать гетерозиготных носителей мутации Если получить клоны из отдельных фибробластов и определить активность фермента, измерив с помощью радиоавтографии количество поглощаемого клетками гипоксантина, меченного тритием, то оказывается, что примерно у половины клонов активность HPRT нормальная, а у половины фермент дефектен. Однако в культурах фибробластов, которые получены без клонирования, подавляющее большинство гетерозиготных клеток обладали активностью. Очевидно, при контакте клеток, дефектных по HPRT, с нормальными клетками их метаболический дефект подвергается коррекции [1090]. Этот вывод подтверждается опытами, в которых нормальные и дефектные клетки смешивали в одной культуре. Феномен назвали «метаболической кооперацией».

Рассмотрим три возможных механизма такой кооперации (рис. 4.22).

4 Действие генов 47

Рис. 4.22. Возможные механизмы метаболической кооперации между клетками с активной HPRT и с неактивным ферментом в культуре гетерозиготных клеток

1 Нормальные клетки снабжают дефектные клетки ДНК или мРНК, в результате последние приобретают способность синтезировать функционально активный фермент

2 Дефектные клетки получают от нормальных готовый фермент. В основе этого предположения аналогия с коррекцией дефектов при мукополисахаридозах (разд. 4 2 2 3). Инкубация культуры фибробластов, дефектных по HPRT, с нормальными клетками, разрушенными ультразвуком, приводила к частичному восстановлению функции фермента.

3. Нормальные клетки синтезируют нуклеотид (конечный продукт), который переносится в дефектные клетки Большинство экспериментальных данных свидетельствует в пользу этого механизма. Если дефектные фибробласты отделить от нормальных клеток, их мутантный фенотип быстро восстанавливается, несмотря на то что нормальная гипоксантин-гуанин—фосфорибозилтрансфераза стабильна в этих условиях в течение многих часов. В другом эксперименте лимфоциты нормальной женщины инкубировали в среде, содержащей меченный тритием гипоксантин. Затем такие клетки смешивали в обычной среде с лимфоцитами мужчины, страдающего синдромом Леша—Найхана. Спустя некоторое время Y-хромосомы мужских клеток с дефектным ферментом, окрашивали акрихинипритом, после чего проводили радиоавтографию. В мужских клетках обнаруживалась метка, что указывало на перенос нуклеотидов из нормальных клеток в дефектные В подобных опытах метаболическая кооперация была продемонстрирована также между преинкубированными нормальными эритроцитами и мутантными лимфоцитами или фибробластами. Оказалось, что в дефектные клетки переносится инозимонофосфат или одно из его производных; по-видимому, активную роль в этом процессе играет мембрана клетки [1053].

Другие проблемы, связанные с недостаточностью HPRT. Дефектная HPRTстала важной модельной системой для изучения мутационного процесса. 1. Эта система дает возможность идентифицировать гемизигот и гетерозигот, измеряя активность фермента в фибробластах, и таким образом сравнивать частоты спонтанных мутаций у мужчин и женщин (разд. 5.15). 2 Ген HPRTэкспрессируется в клетках амниотической жидкости, поэтому недостаточность гипоксантин-гуанин—фосфорибозилтрансферазы удается диагностировать с помощью амниоцентеза. Этим дефект HPRTв корне отличается от других патологических состояний, наследуемых сцепленно с Х-хромосомой, например гемофилии или мышечной дистрофии Дюшенна, при которых биохимический дефект не проявляется в клетках амниотической жидкости. 3. Разработана система отбора точковых мутаций в культурах фибробластов, основанная на использовании необычного субстрата, 8-азагуанина. Она позволяет изучать на клеточном уровне возникновение спонтанных и индуцированных мутаций. В нормальных клетках 8-азагуанин утилизируется HPRT, что приводит к гибели клеток. Клетки, дефектные по HPRT, не способны метаболизировать это соединение и выживают.

Иммунная недостаточность, связанная с дефектами аденозиндезаминазы и нуклеозидфосфорилазы (рис 4 21) Дефект другого фермента, участ-

48 4. Действие генов

вующего в метаболизме нуклеозидов, приводит к иному фенотипу. Этот случай тем более интересен, что дефектной является редкая форма полиморфного фермента. Дефекты одного или нескольких компонентов иммунной системы могут обусловливать повышенную восприимчивость к бактериальным инфекциям. Классическим примером такой патологии является гипогаммаглобулинемия, которая наследуется сцепленно с полом и обусловлена дефектом созревания В-лимфоцитов [1092; 1261]. В-лимфоциты служат местом образования гуморальных антител, и их отсутствие приводит к нарушению синтеза γ-глобулинов. Т-лимфоциты обеспечивают клеточный иммунитет и при этом заболевании остаются интактными.

Различают несколько форм иммунной недостаточности. Одна из них, называемая острой комбинированной обусловливает повышенную восприимчивость к заражению самыми разнообразными бактериями, вирусами и грибами. При этой форме нарушены функции как В-, так и Т-лимфоцитов. Иногда оказываются дефектными только Т-лимфоциты. Оказалось, что в основе таких дефектов лежит нарушение дифференцировки стволовых клеток в зрелые лимфоидные клетки [1274; 1267]. Эта группа заболеваний гетерогенна по этиологии, поскольку известны как случаи с аутосомно-рецессивным наследованием, так и варианты, которые наследуются сцепленно с Х-хромосомой. Среди вариантов с аутосомно-рецессивным наследованием обнаружена дополнительная гетерогенность. Так, комбинированная иммунная недостаточность может быть вызвана дефектом аденозиндезаминазы (24275) или нуклеозидфосфорилазы (16405) [1294].

Аденозиндезаминаза (ADA) катализирует необратимое дезаминирование и гидролиз аденозина до инозина и иона аммония. Нуклеозидфосфорилаза катализирует превращение инозина в гипоксантин и гуанозина в гуанин. Она обладает также небольшой активностью, обеспечивающей превращение аденозина в аденин. Эти ферменты играют ключевую роль в метаболизме РНК и ДНК.

Аденозиндезаминаза кодируется геном, локализованным в 20-й хромосоме (разд. 3.4). Электрофорез в крахмальном геле продемонстрировал полиморфизм этого фермента. Наиболее распространенный аллель обозначается ADA1часто встречающийся полиморфный вариант ADA2. В западных популяциях аллель ADA2встречается с частотой около 0,05 [1309]. Описаны и другие варианты ADA[1294]. Недостаточность ADA является аутосомно-рецессивным признаком. У больных детей в эритроцитах и других тканях активность аденозиндезаминазы полностью отсутствует [1098]. У их родителей, как правило, обнаруживаются промежуточные количества фермента, при этом клинически они вполне нормальны. У больных родителей выявляется остаточная активность ADA [1294]. Оказалось, что дефекты обусловлены структурными мутациями в гене ADA, которые приводят к почти полной потере функциональной активности фермента у больных гомозигот. Разработана пренатальная диагностика недостаточности аденозиндезаминазы [1126].

Нуклеозидфосфорилаза кодируется локусом в 14-й хромосоме [1096]. Обнаружено несколько редких вариантов фермента [1064]. У больных активность нуклеозидфосфорилазы полностью отсутствует, у родителей активность фермента промежуточная [1294]; заболевание наследуется по аутосомно-рецессивному типу. Иммунологическими методами показано, что по меньшей мере две мутации вызывают недостаточность нуклеозидфосфорилазы [1256]. При одной из них имеется перекрестно реагирующий материал (ПРМ), при другой его нет (см. разд. 4.2.2.2). Предполагается, что это мутации в структурном гене фермента. Вполне возможно, что больные являются не истинными гомозиготами, а составными гетерозиготами с двумя различными мутациями.

Обычно у больных с недостаточностью аденозиндезаминазы сильно нарушена функция В- и Т-лимфоцитов [1294], в то же время при нарушении нуклеозидфосфорилазы функция В-клеток интактна и синтез иммуноглобулинов происходит нормально. При дефекте обоих ферментов наблюдается поразительная дисфункция Т-лимфоцитов. Это проявляется в лимфопении, неспособности лимфоцитов реагировать на митогены и ненормальных кожных реакциях на различные антигены.

Точный биохимический механизм, который приводит к иммунологическим нарушениям в этих случаях, не установлен. Высказывались предположения о том, что недостаточность аденозиндезаминазы обусловливает накопление дезокси-АТР, который ингибирует образование пиримидиновых дезоксирибонуклеотидов, что влечет за собой нарушение синтеза ДНК, пролиферации лимфоцитов и, наконец, иммунного ответа. Недостаточность нуклеозидфосфорилазы может иметь сходный механизм [1294].

Наиболее эффективный метод исправления этих нарушений - пересадка костного мозга. В ряде случаев ослабления клинических симптомов, вызванных недостаточностью аденозиндезаминазы, удавалось добиться переливанием нормальных эритроцитов, которые служили источником недостающего фермента [1266].

4. Действие генов 49

4.2.2.7. Фенилкетонурия: пример успешного лечения метаболического заболевания [182; 203]

Метаболическая олигофрения. Фенилкетонурия (ФКУ) (26160) была впервые описана в 1934 г. Фёллингом [1080] у умственно отсталых больных со специфическим «мышиным» запахом. Название этой болезни в 1935 г. дал Пенроуз [1262]. В настоящее время фенилкетонурия - один из наиболее известных примеров врожденных дефектов метаболизма у человека; различным ее аспектам посвящен ряд обзоров [203; 1290; 1287]. Здесь мы обсудим только три основные проблемы: лечение диетой с низким содержанием фенилаланина как первый случай успешного исправления генетического дефекта фермента; генетическую гетерогенность, обнаруженную при массовом обследовании новорожденных, а также проблемы, связанные с выявлением гетерозигот и их возможными фенотипическими аномалиями.

Дефект фермента при ФКУ. L-фенилаланин принадлежит к числу незаменимых аминокислот. Однако только часть L-фенилаланина, поступающего в клетку, может быть использована для белкового синтеза; основная фракция окисляется прежде всего до тирозина и-в значительно меньшей степени - до других соединений, главным образом до фенилпировиноградной кислоты. Парагидроксилирование фенилаланина с образованием тирозина осуществляется в ходе сложной реакции. Гидроксилаза состоит из двух белковых компонентов, один из которых лабилен и обнаруживается только в печени (и, возможно, с меньшей активностью в почках), другой стабилен и присутствует во многих других тканях. Этот стабильный компонент содержит птеридин в качестве кофактора.

Было показано, что ФКУ обусловлена полным отсутствием печеночной фенилаланин—4-гидроксилазы (рис. 4.23) (Юденфред и Купер, 1952 [1331]; Джервис, 1953, [1144]). При этом поражается лабильный компонент ферментной системы. Проведенный позже анализ ферментов при биопсии

Рис. 4.23. Генетический дефект при фенилкетонурии: введение с пищей 5 г d-L-фенилаланина приводит к увеличению концентрации тирозина в сыворотке здорового человека, тогда как в сыворотке больного фенилкетонурией этого не происходит. (По Harris, 1959.)

печени показал наличие остаточной активности (до 6% от нормальной) примерно в половине случаев классической ФКУ. Другие типы гиперфенилаланинемии, для которых характерен более высокий уровень активности фермента, будут обсуждены ниже. Гидроксилазная реакция - один из этапов метаболизма фенилаланина и тирозина, для которого известны различные генетические дефекты, блокирующие метаболизм на различных стадиях (рис. 4.24). Ген, контролирующий эту реакцию, локализован в 12-й хромосоме [1363а].

Диетическое лечение ФКУ. Фенотипические нарушения, возникающие в результате генетического блока метаболизма, могут быть вызваны либо отсутствием метаболита, который синтезируется в результате нормальной реакции, либо накоплением метаболита, который в норме перерабатывается в такой реакции. Примером нарушения первого типа могут служить альбинизм и кретинизм с образованием зоба (рис. 4.24). Скоро выяснилось, что при ФКУ нарушения вряд ли могут быть вызваны недостатком тирозина: обычно тирозин присутствует в пище в достаточных количествах. С другой стороны, появление многочисленных метаболитов, которые обнаруживаются в моче больных ФКУ наряду с возрастанием уровня фенилаланина

50 4 Действие генов

Рис. 4.24. Наследственные нарушения метаболических путей некоторых ароматических аминокислот. Диаграмма несколько упрощена. В ней указаны генетические дефекты, вызывающие фенилкетонурию, альбинизм, алкаптонурию, тирозиноз и три типа наследственного кретинизма.

в сыворотке, указывает на использование дополнительных путей снижения избыточного количества фенилаланина. Возникло предположение, что уменьшение потребления фенилаланина может оказаться эффективным методом лечения. Впервые попытка такого лечения была предпринята в 1953 г. Бикелем и др. [1004]:

«Исходя из предположения, что избыточное количество фенилаланина или, возможно, каких-либо продуктов его расщепления вызывает задержку умственного развития, мы решили держать двухлетнюю девочку, больную фенилкетонурией, на диете с пониженным содержанием фенилаланина. Она была умственно отсталой, не могла стоять, ходить, разговаривать, не проявляла интереса к пище, была равнодушна к своему окружению, непрерывно плакала, постанывала или била себя по голове. Пищу для этого ребенка готовили специально, поскольку для достаточного снижения уровня фенилаланина весь содержащийся в продуктах азот пришлось заменить (кислотным) гидролизатом казеина... Для удаления фенилаланина и тирозина его обрабатывали активированным углем, промытым кислотой. Затем добавляли соответствующие количества тирозина, триптофана и цистина.»

Лечение ребенка начали в стационаре, что позволило вести тщательное наблюдение. После четырехнедельной диеты, полностью исключающей фенилаланин, серьезных клинических изменений, кроме потери веса, отмечено не было. Уровень этой аминокислоты в плазме и моче снизился до нормального, уменьшилось выделение фенилпировиноградной кислоты, а железохлористая реакция, служащая для определения количества фенилпировиноградной кислоты в моче, стала отрицательной (рис. 4.25).

Впоследствии, вероятно, в результате распада тканей возникла общая аминокислотурия. Поэтому в пищу стали добавлять фенилаланин (в диету включили молоко); потребления 0,3-0,5 г оказалось вполне достаточно для нормальной прибавки веса и улучшения биохимических показателей.

4 Действие генов 51

Рис. 4.25. Исследование метаболизма ребенка, больного фенилкетонурией, сразу после лечения с помощью диеты, лишенной фенилаланина. Содержание фенилаланина в сыворотке и моче быстро снизилось до нормального уровня. Добавление в пищу 4 г фенилаланина в день приводило к быстрому возрастанию содержания фенилаланина (Bickel, 1954, Exp Med. Surg, 12, 114-118).

При дальнейшем амбулаторном лечении на протяжении нескольких следующих месяцев показатели умственного развития девочки улучшились: она научилась ползать, глаза ее стали ярче, волосы темнее, она не плакала и не била себя по голове.

Чтобы ответить на вопрос, не было ли наблюдавшееся улучшение случайным, в пищу стали добавлять 4 г фенилаланина в день. Вскоре мать сообщила о явном ухудшении в состоянии ребенка. При госпитализации у девочки были вновь обнаружены биохимические и клинические изменения (рис. 4.25). Этот случай продемонстрировал благотворное действие диеты с низким содержанием фенилаланина на больных ФКУ. В той же статье авторы писали, что «... проводятся дальнейшие контрольные испытания, причем особое внимание уделяется очень маленьким детям, которым можно помочь в большей степени, чем остальным категориям больных.»

Успех диетического лечения был подтвержден другими группами исследователей. Некоторые сомнения связаны с тем, что, с одной стороны, какая-то часть больных ФКУ, не подвергавшихся никакому лечению, имела нормальное умственное развитие, с другой стороны, иногда лечение не помогало. Несмотря на указанные противоречия, в настоящее время твердо установлено, что диета приводит к существенному улучшению развития больных ФКУ. Важно, однако, выполнять два условия.

1. Для предотвращения повреждений мозга необходимо начинать лечение буквально с первых недель жизни.

2. Необходимо тщательно следить за

52 4. Действие генов

Рис. 426. Клетки штамма Bacillussubtilis, нуждающиеся в фенилаланине, инкубируют на поверхности агара. Рост можно наблюдать только тогда, когда в тестируемой пробе крови повышен уровень фенилаланина. В этом случае вокруг капли крови заметен бактериальный рост. Диаметр зоны роста прямо пропорционален концентрации фениланина в крови. А. Точки со стандартными концентрациями фенилаланина, которые возрастают слева направо. Б. Пробы крови здоровых людей. В. Образцы крови с повышенным содержанием фенилаланина (от 6 до 12 мг%).

метаболическим статусом ребенка, в особенности за уровнем фенилаланина.

Лечение не обязательно проводить в течение всей жизни, поскольку мозг взрослого человека, судя по всему, устойчив к аномальным концентрациям метаболитов, характерным для ФКУ.

У многих женщин, излеченных от ФКУ, родились дети. И хотя эти дети были гетерозиготами, примерно у 90% из них наблюдались признаки выраженной умственной отсталости [1196]. Следовательно, внутриматочная гиперфенилаланинемия вредна для развития плода. Чтобы предотвратить это осложнение, для всех больных ФКУ необходимо с самого начала беременности соблюдение тщательно контролируемой диеты с низким содержанием фенилаланина. Подобные проблемы могут возникать и для других врожденных излечимых нарушений метаболизма.

Генетическая гетерогенность ФКУ. Возможность успешного лечения этого заболевания в раннем детстве, до появления клинических симптомов, привела к мысли о необходимости обследования новорожденных. В большинстве высокоразвитых западных стран такое обследование уже проводится. Установлено, что частота ФКУ варьирует от 1:6000 до 1:20 000. Метод обследования должен быть простым и недорогим. Как правило, для этого используется так называемый тест Гатри, основанный на том, что бактерии, нуждающиеся в фенилаланине, растут на капле крови только в том случае, если она содержит фенилаланин в достаточно высокой концентрации [1116] (рис. 4.26). Таким образом, только кровь младенцев с высоким уровнем фенилаланина сможет обеспечить рост этих бактерий.

Вскоре после того, как началось систематическое обследование новорожденных, Стало ясно, что не каждый ребенок, имеющий необычно высокий уровень фенилаланина в крови, болен ФКУ. У многих была острая гиперфенилаланинемия, не приводящая к возникновению клинических симптомов. У другой группы детей высокий

4 Действие генов 53

уровень фенилаланина в крови поддерживался очень недолго и спонтанно нормализовался. Обнаружился полный спектр биохимической и генетической гетерогенности. Неизвестно, сколько существует типов мутаций с различным фенотипическим проявлением. Однако нет причин a priori предполагать, что вариабельность в данном случае будет меньше, чем для глюкозо-6-фосфат—дегидрогеназы (см. 4.2.2.2). Обнаружено, что при редко встречающемся варианте дефектна не фенилаланин— 4-гидроксилаза, а дигидроптеридинредуктаза - фермент, необходимый для поддержания активности гидроксилазы.

Многие из обнаруживаемых фенотипов могут возникать в результате сложной гетерозиготности по мутациям с различными молекулярными характеристиками. С практической точки зрения важно отметить, что остаточная активность гидроксилазы, составляющая 10% нормальной, обеспечивает нормальное соматическое и умственное развитие без специальной диеты.

Чтобы знать возможные фенотипические последствия двойной гетерозиготности по различным вариантам фенилаланингидроксилазы, необходимо изучение фермента у отдельных гетерозигот. Для глюкозо-6-фосфат—дегидрогеназы этот вопрос решить сравнительно просто, так как она содержится в эритроцитах и для анализа достаточно взять у человека кровь. Совсем иная ситуация с фенилаланингидроксилазой. Её можно обнаружить только в клетках печени, поэтому для анализа этого фермента необходим материал биопсии. Но данная процедура не безопасна и обычно не используется в исследовательских целях. Возможно в будущем удастся «включать» ген, ответственный за фенилкетонурию в фибробластах или лимфоцитах, тогда необходимые для изучения фермента массовые обследования (скрининг) станут реальными.

Программы скрининга позволили получить важную информацию об общей частоте генов ФКУ и других гиперфенилаланинемий в человеческих популяциях (разд. 6.1). В настоящее время разрабатываются программы, предназначенные для выявления ряда других метаболических заболеваний, для которых терапевтическое лечение является перспективным.

4.2.2.8. Выявление гетерозигот

Выявление гетерозигот по ФКУ и гиперфенилаланинемии. Для заболеваний, связанных с нарушением метаболизма (в частности, ФКУ), выявление гетерозигот имеет не только теоретическое, но и практическое значение, поскольку может быть использовано для генетических рекомендаций близким родственникам, например сибсам, родители которых страдали ФКУ. Сибсы, не имеющие признаков заболевания, с вероятностью 2/3 являются гетерозиготами. Идеальный метод выявления гетерозиготпрямой анализ фермента, для которого в настоящее время необходима биопсия печени. Другие методы основаны на целенаправленной перегрузке этого метаболического пути: даже имеющейся у гетерозиготы активности фермента достаточно для переработки фенилаланина, в норме потребляемого с пищей, ее может не хватить для переработки избытка фенилаланина. Первую попытку тестирования гетерозигот с помощью избытка фенилаланина предпринял в 1967 г. Хсиа [1134]; он вводил фенилаланин гетерозиготам и следил за его исчезновением в крови. Оказалось, что гетерозиготы довольно четко отличаются от нормальных индивидов. Позднее этот метод удалось усовершенствовать, измеряя в крови не только уровень фенилаланина, но и тирозина, который, как установлено, у гетерозигот несколько ниже.

Состояние здоровья у гетерозигот. На первый взгляд гетерозиготные родители больных ФКУ, а также их братья и сестры абсолютно здоровы. Пенроуз [1262], однако, обнаружил в семье больных ФКУ у шести родственников особый вид психического заболевания депрессивного типа, которое проявлялось после 50 лет. Он предположил, что для гетерозигот характерен повышенный риск заболевания психическими расстройствами. Однако в течение последних 50 лет проблеме возможных аномалий и подверженности заболеваниям у гетерозигот по ФКУ уделялось пора-

54 4. Действие генов

зительно мало внимания, и немногие исследования, посвященные этой проблеме, часто не адекватны с точки зрения эпидемиологии. Этот вопрос рассматривается в недавнем обзоре [1340].

Особенности, выявляемые у гетерозигот по ФКУ, подразделяются на 4 основных типа: отклонения по IQ и другим психологическим тестам; повышенный риск психических заболеваний; отклонения от нормы в электроэнцефалограмме (ЭЭГ), нарушение процессов размножения. Первые три аспекта будут подробно рассмотрены в разд. 8.2.3.2, посвященном генетике поведения; здесь отметим лишь, что большинство гетерозигот психически здоровы, однако для них высок риск заболеть шизофренией определенного типа, развивающейся в позднем возрасте. Описано небольшое снижение IQ (особенно в отношении устной речи), довольно часто выявляются отклонения в ЭЭГ. Согласно некоторым данным (вызывающим сомнение), для гетерозиготных по ФКУ женщин повышен риск спонтанных абортов и мертворождений.

Заслуживают внимания отдельные сообщения об аномально высоком уровне фенилаланина крови у гетерозигот в стрессовых ситуациях, таких как грипп с высокой температурой [1008] или беременность. Специалистами в области экогенетики было выдвинуто интересное предположение, что аспартам, подслащивающее вещество с высоким содержанием фенилаланина, может наносить вред развивающимся эмбрионам у гетерозиготных женщин. (См. обсуждение материнской гиперфенилаланинемии в разд. 9.1.) Приведенные здесь данные, касающиеся гетерозигот по ФКУ, пока нельзя считать доказанными. Обследование нескольких сотен детей с небольшим умственным отставанием и отклонениями в поведении показало наличие среди них индивидов с повышенным уровнем фенилаланина в крови [1125]. Для проверки этих данных необходимы дополнительные исследования. Если факты подтвердятся, можно будет с уверенностью сказать, что уменьшенная активность фермента у гетерозигот делает их более подверженными определенным стрессовым ситуациям: этот феномен необходимо изучать.

Общие проблемы выявления гетерозигот. Впервые важность выявления и изучения гетерозигот для медицинской генетики отметил в 1949 г. Нил [1236]. Им были систематизированы имевшиеся в то время разрозненные данные. Позже (в 1953 г.) появились более полные работы Нила [1237] и (в 1954 г.) Франческетти и Клайна [1084]. Быстрое развитие биохимической генетики сделало возможным выявление гетерозиготных носителей многих болезней, особенно тех, которые обусловлены дефектами ферментов, выявляемых в фибробластах или клетках крови (табл. 4.10). Как правило, активность ферментов у гетерозигот снижена приблизительно вдвое по сравнению с нормальными гомозиготами, однако во многих случаях четкую грань между этими двумя группами провести невозможно. Некоторые индивиды демонстрируют промежуточные характеристики даже при прямом измерении активности фермента. Это неудивительно, если принять во внимание, что разные мутации в составе одного и того же локуса вызывают изменения активности фермента различных типов. Выявление гетерозигот важно не только для изучения механизма действия ферментов, оно имеет очень большое практическое значение. Установление факта гетерозиготности очень существенно для людей, у которых близкие родственники страдают болезнями, детерминируемыми Х-хромосомой или аутосомно-рецессивными болезнями. Например, сыновья женщин, гетерозиготных по Х-сцепленному заболеванию, с вероятностью 50% наследуют эту болезнь. Для большинства аутосомно-рецессивных болезней выявление гетерозигот не играет столь важной роли, если только потенциальные гетерозиготыбратья или сестры больного гомозиготного индивида - не собираются жениться на двоюродных родственниках. Риск появления гомозиготных детей имеется только в том случае, когда будущие родители оба гетерозиготны, а для большинства рецессивных заболеваний вероятность случайной встречи таких гетерозигот чрезвычайно мала (см. закон Харди-Вайнберга, разд. 3.2). Выявление гетерозигот - необходимый этап при обследовании популяций. Уста-

4. Действие генов 55

Таблица 4.10. Некоторые способы выявления гетерозигот

Способы

Примеры

Нестандартная полоса при белковом электрофорезе

Гемоглобинопатии

Пониженная активность фермента или белка в эритроцитах

Галактоземия (уменьшение активности галактозо-1-фосфат—уридилтрансферазы)

лейкоцитах

Нарушение процесса запасания гликогена II типа (Помпе) (уменьшение активности α-глюкозидазы)

фибробластах и клетках амниона

Синдром Леша-Найхана (мозаичность по дефекту HPRT) и другие многочисленные ферментативные нарушения (обнаруживаются всё новые)

факторах свертываемости крови

Гемофилия, недостаточность протромбина и недостаточность стабильного фактора (фактор VII)

клетках печени, взятых путем биопсии

Фенилкетонурия (уменьшение активности фенилаланингидроксилазы)

Ненормальная концентрация метаболитов в крови

Фенилкетонурия (аномальная концентрация фенилаланина после его введения)

Функциональные нарушения

энзиматических реакций

Варианты псевдохолинэстеразы с нарушенным ингибированием

структурных элементов

Сцепленная с Х-хромосомой мышечная дистрофия Дюшенна (возрастание содержания креатинфосфокиназы в сыворотке)

Морфологические нарушения

Сцепленный с Х-хромосомой глазной альбинизм (аномальный тип пигментации сетчатки)

новлено, например, что около 8% негритянского населения Америки - гетерозиготны по гену серповидноклеточной анемии и около 3-4% евреев-ашкенази являются гетерозиготами по гену болезни Тея-Сакса. Наиболее распространенным (1:2000) рецессивным заболеванием в Северной и Центральной Европе следует считать муковисцидоз. Гетерозиготы по нему составляют 4-5% всей популяции. Их выявление в этом случае очень желательно, поскольку велика вероятность обнаружения пар, в которых оба партнера несут ген муковисцидоза в гетерозиготном состоянии (не зная об этом). Потомство таких пар необходимо подвергать внутриутробному обследованию. К сожалению, основной биохимический дефект при этом заболевании неизвестен. Поиск гетерозигот и пренатальная диагностика значительно упростились после того, как ген, ответственный за это заболевание, с помощью тесно сцепленного маркерного фрагмента ДНК был локализован в 7-й хромосоме [1167; 1344а; 1357а].

Подверженность заболеваниям у гетерозигот по рецессивным состояниям. Отсутствие простого надежного способа выявления гетерозигот по муковисцидозу достойно сожаления еще и потому, что с его помощью можно было бы решить и другую серьезную проблему. В начале 60-х годов появилось сообщение, согласно которому гетерозиготные носители муковисцидоза имеют повышенный риск заболеть язвой желудка или двенадцатиперстной кишки, а также хроническим бронхитом [1170]. Последующие исследования как будто не подтвердили эти данные. Окончательно вопрос можно будет решить только после того, как в возрастной группе, особенно подверженной названным заболеваниям, будут учтены все гетерозиготы. Подобные исследования возможны только при наличии надежного теста на гетерозиготность. В разд. 3.7.4 обсуждалась недостаточность α1-антитрипсина как пример гомозиготного состояния, которое во многих случаях обусловливает подверженность хроническим обструктивным болезням лег-

56 4 Действие генов

ких. Опасность заболеть увеличивается при соприкосновении с определенными агентами окружающей среды, такими как табачный дым. Известно также, что гетерозиготы по серповидноклеточной анемии здоровы в нормальных условиях, но при умеренной гипоксии, например на высоте свыше 2500 м над уровнем моря, у них может возникнуть серповидноклеточная анемия и развиться инфаркт селезенки.

Имеется много разрозненных данных [2340], касающихся других заболеваний. Например, у гетерозигот по различным липидозам наблюдается незначительное снижение IQ в сочетании с личностными расстройствами. У гетерозигот по цистинурии часто образуются камни в почках; гетерозиготы по галактокиназной недостаточности подвержены преждевременной катаракте; при некоторых разновидностях болезни Вильсона описаны нарушения функционирования почечных канальцев и незначительные неврологические изменения. Возможный риск развития рака был тщательно изучен для гетерозигот по пигментной ксеродерме, которая обусловлена нарушением эксцизионной репарации ДНК (разд. 5.1 6.3). Повышенный риск рака в сравнительно молодом возрасте был характерен для синдрома Блума и для атаксии-телеангиэктазии (но не для анемии Фанкони). Интересно отметить, что вероятность заболеть раком кожи для гетерозигот по пигментной ксеродерме повышена только на юге США, но не в других районах страны В данном случае налицо экогенетическая проблема: увеличение интенсивности УФ-излучения вызывает перегрузку эксцизионной системы репарации, которая вполне может справиться с низким уровнем УФ-излучения.

Для того чтобы сделать обоснованный вывод о подверженности обычным болезням и о наличии небольших физиологических отклонений, требуются сложные статистические исследования и тщательный подбор контролей. Прежде всего необходимо обследовать большое количество гетерозигот, выявленных надежными биохимическими и генетическими методами. Изучение гетерозигот позволит глубже понять генетические условия, вызывающие обычные заболевания, и подойти к решению многих других проблем. Например, вариабельность, выявляемая при измерении IQ, в значительной степени может быть вызвана в популяции просто высокой частотой гетерозигот по рецессивным болезням (см. разд. 8.2.3.2). Если окажется, что повышенная чувствительность к заболеванию у гетерозигот является правилом, а не исключением, наши предсказания об увеличении мутационного груза, обусловленного ионизирующей радиацией и химическими мутагенами, придется в значительной степени пересмотреть. Таким образом, необходимы дальнейшие исследования в этом направлении. Особенно важно разрабатывать качественные тесты, позволяющие отличать гетерозигот от нормальных индивидов.

Тестирование гетерозигот при гемофилии А(30670). Особое значение в генетической консультации имеет выявление гетерозиготных носителей в случае заболеваний, сцепленных с полом. Гемофилия А – одно из наиболее часто встречающихся заболеваний, детерминируемых Х-хромосомой (разд. 3.1.4). Она возникает в результате нарушения гуморального фактора, необходимого для первой стадии свертывания крови (рис. 4.27) - антигемофилического глобулина (фактор VIII). У нормальных индивидов активность этого белка в плазме варьирует от 40 до 300% относительно среднего значения в популяции, принятого за 100% [1277]. У больных гемофилией активность фактора VIII резко снижена или даже полностью отсутствует. Однако плазма большинства больных содержит вещество, которое реагирует с антисывороткой к фактору VIII. Судя по всему, в крови таких гемофиликов содержится антигемофилический глобулин, потерявший свою активность, но сохранивший иммунологические свойства в качестве перекрестно-реагирующего материала (ПРМ, англ. CRM разд. 4.2.2.2); концентрация такого белка - нормальная. У гетерозигот благодаря инактивации Х-хромосомы половина клеток продуцирует активный фактор VIII, способный обеспечить свертывание крови и проявлять специфические иммунологические свойства. Остальные клетки продуцируют ПРМ, сохраняющий иммунологические свойства, но утративший способность участвовать в свертывании крови. Таким образом, активность свертывания крови у

4. Действие генов 57

Рис. 4.27. Стадии свертывания крови Почти для всех этих стадий известны наследственные нарушения. Недостаточность фактора VIII вызывает гемофилию А, фактора IX гемофилию В [207].

гетерозигот должна быть снижена приблизительно вдвое по сравнению с нормой. При иммунологическом определении, однако, будет выявляться нормальное количество антигемофилического 1лобулина, поскольку с антителами будут одновременно реагировать и активный белок, и ПРМ.

До разработки иммунологического теста идентификация гетерозигот основывалась только на определении активности фактора VIII. Хотя средняя активность у гетерозигот действительно была низкой и составляла около 50%, сохранялось большое перекрывание между гетерозиготами и нормальными индивидами, сильно затруднявшее генетическую консультацию. Этот результат не удивителен, поскольку у здоровых людей способность к свертыванию крови варьирует в огромной степени. Серьезный прогресс стал возможен после введения в практику количественного иммунологического теста. Однако, прежде чем использовать этот метод, необходимо доказать наличие ПРМ в крови хотя бы одного больного гемофилией в обследуемой семье, поскольку существует разновид-

58 4. Действие генов

ность гемофилии А (острая), при которой ПРМ в крови отсутствует. A priori ясно, что не всякую гетерозиготную женщину можно выявить таким способом, поскольку вследствие случайной инактивации Х-хромосомы некоторые индивиды будут абсолютно нормальными по обоим тестам (иммунологическому и свертываемости). Совсем недавно для идентификации носителей гена гемофилии стали применяться усовершенствованные биохимические методы, в особенности определение компонентов молекулы фактора VIII; кроме того, стали более адекватными статистические методы, объединившие вероятностные оценки на основе изучения родословных и результаты лабораторных исследований [1111 а, б]. Обнаружение полиморфизма ДНК в гене фактора VIII открыло новые перспективы не только для выявления гетерозигот, но и для пренатальной диагностики.

Здесь будет уместно заметить, что последние годы характеризовались впечатляющим прогрессом в исследованиях свертывания крови и его нарушений. Совместная работа различных белков, подчиненных сложному генетическому контролю, в процессе свертывания крови и растворения тромбов - это пример взаимодействия многих генетических факторов в выполнении сложной физиологической функции. Этот клубок удалось распутать в основном благодаря изучению крови больных с различными генетическими нарушениями свертываемости. Свертывание крови - это не простая и даже не просто разветвленная цепная реакция; в нее входят циклы обратной связи. Некоторое представление о системе свертывания крови дает рис. 4.27. Эта тема детально обсуждается в литературе [1111а, б; 1214].

Выявление гетерозигот по мышечной дистрофии Дюшенна [1119; 1221]. Определение носителей дефектного гена особенно важно с практической точки зрения при Х-сцепленной мышечной дистрофии Дюшенна (31020). Это тяжелое неизлечимое заболевание, которое неизбежно ведет к ранней смерти. Вот почему у женщин с высоким риском рождения больного мальчика беременность разумнее прекратить, если установлено, что эмбрион мужского пола. Из этого следует, что риск рождения больного и статус носителя должны быть определены с максимальной точностью. Для этого необходимо сочетание статистических и биологических методов (см. приложение 8). Среди биологических методов наиболее информативен метод измерения активности сывороточного фермента - креатинфосфокиназы. В норме этот фермент обнаруживается только в мышцах, и уровень его в сыворотке низок. Однако при нарушении мышечной ткани большое количество фермента попадает в кровь и активность его возрастает. У гемизиготных больных мужчин регистрируется очень высокий уровень креатинфосфокиназы. Лишь на последних стадиях болезни, когда разрушена уже большая часть мышечной ткани, он снижается. Около 70% женщин, достоверно являющихся гетерозиготными носителями (у которых по крайней мере один сын пораженный), имеют отчетливо повышенный уровень фермента в крови. Проблема диагностики осложняется тем обстоятельством, что нормальные индивиды и носители наиболее четко различаются лишь в детстве, а с возрастом уровень креатинкиназы падает и у здоровых, и в еще большей степени у гетерозигот. Падает он также и в ходе беременности.

Помимо определения активности креатинкиназы было предложено много других способов выявления гетерозигот. Недавно с помощью методов ультрасонографии или компьютерного ультразвукового сканирования у носителей обнаружены значительные изменения в строении бедренных и икроножных мышц [1283]. В будущем значительную роль в более точной оценке риска, несомненно, будет играть анализ сцепления с ДНК-маркерами на основе технологии рекомбинантных ДНК [1358] (разд. 3.4.3). Заметим, однако, что дистрофия Дюшенна нередко проявляется в семье спорадически, т. е. возникает вследствие новых мутаций в половых клетках матери (разд. 5.1.3.4), что во многих случаях затрудняет анализ сцепления. Вот почему совершенно необходимо улучшать методы выявления носителей по их фенотипу. Мозео [1221] и Харпер [1119] выдвинули ряд полезных предположений для генетической консультации.

4. Действие генов 59

Трудности в выявлении гетерозигот. Если о гетерозиготности судят по уровню ферментативной активности или на основании какого-либо количественного анализа крови, часто возникают осложнения, связанные с перекрыванием значений. Методы поиска гетерозигот могут заметно различаться для носителей аутосомно-рецессивных или сцепленных с Х-хромосомой мутаций, с одной стороны, и для носителей гена аутосомно-доминантного заболевания, с другой. В большинстве случаев средние уровни анализируемого вещества у гетерозигот и у нормальных индивидов достоверно различаются. Однако при этом, как правило, имеет место значительное перекрывание выборочных распределений, так что многие здоровые люди по уровню анализируемого вещества могут быть ошибочно приняты за гетерозигот. Причины этого явления не вполне ясны, возможно, оно связано с существованием невыявленных «изоаллелей», каждый из которых определяет свой диапазон уровней ферментативной активности (разд. 3.6). При использовании количественных тестов для правильной интерпретации результатов важно оценить априорную (или байесовскую) вероятность гетерозиготности.

В таблице 4.11, А в качестве примера показаны результаты ферментного анализа для острой перемежающейся порфирии. Это заболевание может проявляться у гетерозигот, но при скрининге популяции большую часть случаев повышения активности порфобилиноген-дезаминазы следует отнести к ложным гетерозиготам, поскольку реальная популяционная частота истинных гетерозигот составляет всего лишь 1:10 000. Для больного, среди родственников которого нет пораженных порфирией, но у которого некоторые клинические симптомы позволяют заподозрить это заболевание, априорную вероятность можно оценить только грубо. У брата или сестры достоверно больного априорная вероятность гетерозиготности составляет 50%. Вероятность того, что в таких случаях результаты обследования действительно свидетельствуют в пользу гетерозиготности, можно вычислить, исходя из априорного ожидания и степени перекрывания между здоровыми и гетерозиготами, которая должна быть определена по возможности точно (табл. 4.11, А, Б).

Из этого вытекает необходимость организации централизованных лабораторий, где должно проводиться сравнительное обследование большого числа здоровых и гетерозигот и где можно было бы получить генетическую консультацию.

Изучение уровня порфобилиноген-дезаминазы при острой перемежающейся порфирии показало, что значения активности этого фермента, характерные для 30% контрольной (т. е. нормальной) популяции, перекрываются со значениями, полученными на выборке несомненных гетерозигот, страдающих острой перемежающейся порфирией (1) (табл. 4.11). Только у 20% гетерозигот уровень фермента был ниже, чем у всех представителей контрольной популяции. Рассмотрим модельный случай, когда у людей различных групп установлена одна и та же активность фермента-95 единиц (табл. 4.11). В соответствии с априорными оценками вероятности (табл. 4.11, А) общая оценка вероятности носительства гена порфирии составит: а) 0,07% для человека из общей популяции без каких-либо симптомов; б) 7% для человека с 1%-ным риском; в) 44% для лиц с 10%-ным априорным риском и г) 87% для близкого родственника больного с 50%-ным риском. Эти данные показывают значительную неопределенность диагноза в том случае, когда не может быть получена надежная априорная оценка вероятности заболевания. Надо отметить, что повторные измерения не всегда делают окончательную оценку более точной. При очень низких и очень высоких уровнях фермента интерпретация отличается, если, как в нашем примере, для большого числа нормальных и гетерозиготных особей известны уровни активности фермента.

В отличие от количественных оценок, которые, как правило, неоднозначны, качественная аномалия по закону «все или ничего», выявленная биохимически или с помощью рекомбинантных ДНК, позволяет поставить четкий диагноз независимо от априорных вероятностных оценок.

60 4. Действие генов

Таблица 4.11, А. Уровень активности порфобилиноген-дезаминазы у 217 здоровых людей и 105 больных острой перемежающейся порфирией. (По Bonalti-Pellie et al., 1984.)

Активность фермента (единицы)

Больные порфирией и облигатные гетерозиготы, % (х)

Здоровые люди контроль, % (у)

Лабораторные оценки вероятности обнаружения гетерозигот (х:у)

<70 1)

20

0

Очень высокая 1)

70-79

23,8

0,5

48:1

80-89

22,9

0,9

25:1

90-99

16,2

2,3

7:1

100-109

9,5

3,7

2,6:1

110-119

5,7

8,3

0,7:1

120-129

1,9

14,3

0,13:1

>12921

0

70

Очень низкая (практически отсутствует)21

Необходимо отметить, что оценки в каждой лаборатории должны быть получены независимо на основе достаточно большой выборки.

1) Поскольку такой уровень активности фермента был обнаружен у 20% гетерозигот и не был обнаружен ни у одного здорового человека, вероятность того, что человек с такой ферментативной активностью является гетерозиготой, очень высока. Чем ниже уровень активности фермента, тем вероятность этого выше.

2) Значения активности, превышающие 129 единиц, не были зарегистрированы ни у одного больного порфирией, в то же время такой уровень активности фермента наблюдался у 70% здоровых людей. При более высоких значениях активности фермента вероятность гетерозиготности по гену порфирии снижается.

Таблица 4.11, Б. Оценки априорной вероятности гетерозиготности по гену острой перемежающейся порфирии при одном и том же показателе активности фермента (95 единиц) у больных с различными значениями априорной вероятности. (Лабораторные оценки взяты из работы Bonalti-Pellie et al., 1984.)

Лабораторная оценка (единицы)

Априорная

Лабораторные оценки вероятности гетерозиготности (см. табл. 4.11, А)

Объединенные оценки вероятности гетерозиготности

Итоговая оценка риска гетерозиготности 2)

Оценка1)

вероя гность

95

1/9999 (по результатам обследования популяции)

1/10000

7:1

7:9999

0,0007 = 1/1500

95

1/99 (при наличии слабых клинических симптомов)

1/100

7:1

7:99

0,07

95

1/9 (при наличии четких клинических симптомов)

1/10

7:1

7:9

0,44

95

1:1 (для сибсов и детей больного)

1/2

7:1

7:1

0,87

1) Оценка = Р:(1 — р), где р- вероятность.

21 Получено перемножением априорных вероятностей и лабораторных оценок, определенных для лиц, несущих и не несущих ген порфирии; для определения итоговой оценки риска гетерозиготности как x/x + z, где х - объединенная оценка, определенная для человека, несущего ген порфирии, a z—объединенная оценка, определенная для здорового человека. Пример: априорная оценка - 1:9, лабораторная оценка - 7:1, объединенная оценка отношения вероятности наличия и отсутствия в генотипе гена порфирии 7:9, определенная как [(1 х 7):(9 х 1)]. Итоговая оценка 7/(7 + 9) = 7/16 = 44%.

4 Действие генов 61

4.2.2.9. Лечение наследственных метаболических заболеваний [1289; 1057; 1058]

Общие принципы. В прошлом констатация наследственного характера признака подразумевала, что такой признак нельзя изменить путем внешних воздействий. Поэтому считалось, что наследственные болезни невозможно лечить. Многие врачи и психиатры полагали, что роль генетики в развитии медицины незначительна. Ошибочность подобной точки зрения становится ясной при изучении врожденных дефектов метаболизма. Наши возможности повлиять на заболевание или на аномалию поведения зависят часто не от того, наследуются они или нет, а от глубины наших знаний о механизмах развития патологии.

Повлиять на наследуемые признаки можно в принципе на всех уровнях действия гена. Теоретически, наиболее полным было бы воздействие на уровне генетического материала - ДНК. Впервые перенос ДНК неполовым путем с помощью бактериофага (или другими способами) был продемонстрирован для бактерий. В настоящее время такой перенос становится возможным для высших организмов, включая клетки человека. Методы генной инженерии привлекли внимание широкой общественности, однако без достаточных оснований акцент в публикациях делался на клонировании и создании искусственных людей. В результате многие были напуганы последствиями генетических исследований человека вообще. В действительности же генная терапия некоторых менделирующих заболеваний в будущем может стать очень эффективной. В таком случае она займет достойное место в ряду различных терапевтических средств. Эту тему мы более подробно обсудим дальше, в разделе 9.2, посвященном генетическому будущему человечества.

В некоторых случаях, вероятно, проще заменить не сами гены, а их непосредственные продукты, мРНК. В настоящее время примеры удачного применения такого подхода неизвестны. Значительно дальше исследователи продвинулись в попытках заместительной терапии с использованием ферментов или других белков. Часто метаболические последствия генетического блока удается преодолеть путем соответствующего воздействия извне. Классический пример такого подхода - лечение фенилкетонурии диетой с ограниченным содержанием фенилаланина - обсуждался в разд. 4.2.2.7. В других случаях клинические последствия связаны не с накоплением метаболитов, предшествующих блокированному этапу, а с отсутствием метаболита, следующего после него. В такой ситуации может оказаться полезным добавление к пище отсутствующего метаболита.

Наконец, возможно успешное лечение многочисленных вторичных последствий генетических заболеваний от исправления нарушений эндокринной регуляции, вызванных блоком синтеза гормонов, до переливания крови при наследственной анемии. Краткая сводка существующих терапевтических возможностей приведена на рис. 4.28. Ниже будут рассмотрены многочисленные примеры. Более полный обзор дан в [1058].

Заместительная белковая или ферментная терапия. Классический пример лечение гемофилии А. Фактор VIII при активности в 30-40% от средней для нормы останавливает кровотечение. Такой уровень активности может быть достигнут инъекциями этого фактора. Его концентрат готовят из крови человека. Доступность концентрата сделала возможным лечение кровотечений в домашних условиях; больные гемофилией могут вести почти нормальную жизнь. Проблемы возникают в связи с тем, что для приготовления достаточных количеств требуемого препарата необходимо большое количество донорской крови [428]. В настоящее время уже сделаны первые и решающие шаги, направленные на получение чистых препаратов фактора VIII методами генетической инженерии: соответствующий ген уже клонирован, достигнута его экспрессия (в составе плазмиды) в культуре трансформированных клеток.

Другим примером может служить лечение препаратами псевдохолинэстеразы больных с нарушенной активностью этого фермента [1105]. Отметим два благоприят-

62 4 Действие генов

Рис. 4.28. Возможные пути исправления наследственных нарушений метаболизма Введение в организм ДНК или РНК не дает положительного результата Эффективна заместительная ферментная терапия Вторичные эффекты нарушения работы ферментов можно преодолеть добавлением нормального метаболита или удалением избытка субстрата или метаболита

ных фактора, облегчающих коррекцию данной патологии

1 Недостаточность псевдохолинэстеразы не оказывает вредного воздействия в нормальных условиях, профилактическое лечение требуется только тогда, когда больному вводят мышечные релаксанты, т е при серьезных операциях

2 После инъекции нормальной плазмы активность фермента уменьшается в два раза в течение 12 часов Таким образом, для проведения операции достаточно одной инъекции

При первых попытках лечения в качестве источника фермента использовали плазму здорового человека, но вскоре стало очевидно, что очищенные препараты фермента обладают явными преимуществами Как показано на рис 4 29, необходимый уровень фермента поддерживается достаточно долго после инъекции и нормализует длительность релаксации мышц

Ферментная терапия других наследственных заболеваний пока не вошла в каждодневную врачебную практику, хотя предварительные исследования оказались довольно успешными, например в случае болезни Гоше, при которой внутривенно вводили недостающую глюкоцереброзидазу (23080, [1056]) Как правило, заместительная терапия при заболеваниях, вызванных ферментной недостаточностью, требуется в течение всей жизни В связи с этим возникают следующие проблемы

4 Действие генов 63

Рис. 4.29. Влияние инъекций псевдохолинэстеразы (препарат обогащен в 1300 раз) на продолжительность остановки дыхания и активность этого фермента по отношению к двум субстратам: бензоилхолину и сукцинилдихолину На рисунке представлены результаты обследования трех индивидов с атипичными ферментами до лечения (I) и через десять минут после инъекции (II). После инъекции активность фермента возрастает. Это ведет к уменьшению времени остановки дыхания [196]. Высота белых и черных столбиков отражает изменения в активности.

а) фермент удаляется из организма довольно быстро, необходимо постоянное поддержание его уровня;

б) если вводимый фермент будет воспринят иммунной системой как чужеродный белок, антитела сделают инъецируемый материал биологически неэффективным.

Существуют различные способы преодоления подобных препятствий. Для получения ферментов, которые синтезируются в клетках человека и потому являются наиболее предпочтительными для терапии, необходимы очень большие объемы клеточных культур. Источником ферментов может служить также плацентарный материал. Ферментативный дефект при мукополисахаридозе типа Хурлера (разд. 4.2.2.3) удается временно компенсировать переливанием лейкоцитов [1168], а при болезни Хантера пациентам имплантируют культивированные in vitro фибробласты близких родственников [1052]. В обоих случаях достигается временное снижение количества накопленного метаболита. Недавние достижения в этой области подробно обсуждаются в других обзорах [1057; 1058]. Если фермент вводить в составе полупроницаемых микрокапсул, доступ к нему возможных антител будет затруднен, в то время как субстрат, молекулы которого обладают обычно гораздо меньшей молекулярной массой, сможет проникнуть внутрь капсулы [983].

Для ферментов, поглощаемых клетками, таких, как ферменты лизосом, которые участвуют в катаболизме гликозаминогликана (разд. 4.2.2.3), можно применять внутривенное введение без использования капсул. В заключение отметим, что заместительная терапия при заболеваниях, вызванных дефектами ферментов, не всегда возможна и эффективна. Более плодотворным нам представляется подход, который подразумевает воздействие на метаболические последствия ферментативных дефектов.

Изменение факторов внешней среды удаление метаболита перед блокированным этапом. Метаболит, являющийся субстратом дефектного фермента и накапливающийся перед блокированным этапом метаболического пути, достаточно просто удалить, если он не синтезируется в организме, а поступает с пищей. Мы уже говорили об этом в случае фенилкетонурии. В качестве другого примера можно привести галактоземию, которая возникает из-за недостаточности одного из трех ферментов, превращающих галактозу в глюкозу. При этом заболевании удалить накапливающийся субстрат проще, поскольку галактоза содержится почти исключительно в молоке. Проблема усложняется, если вредный метаболит нельзя удалить, не нарушив тем самым нормальной функции организма.

В некоторых случаях субстрат дефектного фермента в норме образуется непосредственно в организме. В качестве примера можно опять привести мукополисахариды: они постоянно синтезируются и нужны для многих структурных элементов организма. В такой ситуации небольшое снижение синтеза может замедлить развитие заболевания, а иногда даже помочь

64 4. Действие генов

организму справиться с ним благодаря использованию остаточной активности фермента или альтернативного метаболического пути. Описаны случаи, когда нарушение ферментативной активности фенотипически проявляется не в накоплении метаболита перед блокированным этапом, а в отсутствии метаболита после него.

Изменение факторов внешней среды: замещение метаболита после блокированного этапа. Терапия такого типа широко применяется при нарушениях синтеза гормонов. Этой теме посвящено несколько недавних обзоров [171; 1288; 1243]. Упомянем также болезни накопления гликогена (типы I и III).

В этом случае большая часть клинических симптомов обусловлена не собственно накоплением гликогена, а невозможностью его расщепления до глюкозы, что ведет к хронической гипогликемии. Лечение внутривенными инъекциями глюкозы столкнулось бы с непреодолимыми трудностями и, кроме того, привело бы к еще большему накоплению гликогена. Поэтому было предложено хирургическое вмешательство с целью формирования пути, позволяющего крови миновать печень; в результате поступающая из кишечника кровь содержит глюкозу в достаточной концентрации. Создание шунта между портальной и нижней полой венами позволяет большей части крови миновать печень и транспортировать глюкозу непосредственно к сердечной мышце и к другим органам. После этой операции в состоянии больных наблюдается явное улучшение [1131].

Другим примером может служить оротовая ацидурия, описанная в разд. 4.2.2.4. Избыток оротовой кислоты сам по себе не вызывает заметных вредных последствий, однако, недостаток уридинсодержащих соединений приводит к нарушению синтеза нуклеиновых кислот, что влечет за собой мегалобластную анемию и, кроме того, серьезную задержку роста. Добавлением уридина к пище удается восполнить недостаток метаболита и предотвратить проявление клинических симптомов заболевания.

Удаление метаболита, предшествующего блокированному этапу, и добавление метаболита, следующего за блоком. При заболеваниях, связанных с накоплением гликогена, повышение концентрации глюкозы (которая образуется в блокированной реакции благодаря тому, что кровь частично минует печень) приводит одновременно к уменьшению накопления гликогена. При других болезнях клинические симптомы обусловлены обоими механизмами, что приводит к усложнению терапии. Примером может служить гомоцистинурия [23620], причиной которой является нарушение цистатионин - синтазы (рис. 4.30). Гомоцистеин образуется из метионина, поступающего с пищей. Поэтому необходимо уменьшить количество потребляемого метионина. Но поскольку метионин, как и фенилаланин, принадлежит к числу незаменимых аминокислот, его нельзя полностью исключить. Важно также, что в нормальных условиях из метионина образуется цистеин (рис. 4.30). Для гомоцистинурии характерно большое число симптомов. Многие из них вызваны недостатком цистеина; поэтому диета включает повышенное количество цистеина. При другом типе гомоцистинурии помогают терапевтические дозы витамина В6, который является коферментом цистатионин - синтазы.

Лечение путем устранения побочных эффектов метаболических заболеваний. В настоящее время большинство наследственных болезней, поддающихся лечению, лечат именно этим способом. При таком подходе не требуется точного знания патофизиологических и генетических механизмов. Например, мы почти ничего не знаем о биохимических причинах полидактилии, «заячьей губы» или «волчьей пасти». Но это не мешает успешно оперировать таких больных. Очень мало известно о биохимических основах психических болезней (разд. 8.2.3.6). Тем не менее для лечения больных, страдающих шизофренией или эмоциональными расстройствами, оказалось возможным подобрать чисто эмпирическим путем вполне адекватный способ медикаментозного лечения. Во всех областях медицины большая часть методов

4. Действие генов 65

Рис. 4.30. Образование цистеина из метионина. При гомоцистинурии цистатионин-синтаза неактивна. Это ведет к увеличению количества гомоцистеина и гомоцистина с одной стороны, и к недостатку цистеина с другой.

лечения (включая успешные) основана на эмпирических выводах независимо от того, каким в действительности является вклад генетической компоненты в развитие заболевания. В настоящее время наши возможности лечения наследственных болезней не очень велики [1045]. Впрочем, этот вывод можно отнести к большинству заболеваний.

Главная цель медико-биологических исследований - терапевтическое вмешательство, основанное на детальных знаниях патофизиологических механизмов. В качестве примера приведем группу адреногенитальных синдромов, обусловленных дефектами ферментов, участвующих в синтезе стероидных гормонов надпочечников. Установлено, что при нарушении синтеза кортизола (17-оксикортикостерона) блокирована нормальная обратная связь, подавляющая образование АКТГ в гипофизе, который стимулирует образование в большом количестве 17-кетостероидов из 17-оксипрогестерона. Кетостероиды в свою очередь стимулируют развитие половых признаков и ведут к маскулинизации больных женщин. Добавление кортизола восстанавливает цикл обратной связи, снижается образование АКТГ и, вследствие этого 17-кетостероидов, что предотвращает маскулинизацию (рис. 4.31). Диета при болезнях метаболизма и общий генотрофический принцип. При многих болезнях метаболизма фенотипических последствий ферментативного дефекта можно избежать, если соответствующим образом изменить диету. Только в силу редкости подобных состояний их относят к патологии: если бы подобные ферментативные нарушения обнаруживались у большей части населения, мы изменили бы соответственно свои привычки в еде, и то, что сейчас считается дефектом, рассматривалось бы как норма. Примером может служить сниженное всасывание лактозы, содержащейся в молоке, характерное для большинства лиц восточного происхождения, негров и многих европейцев. Потребление больших количеств молока и молочных продуктов вызывает у таких дефектных по лактазе больных метеоризм и чрезмерно повышенную перистальтику. У большинства людей, происходящих с северо-запада Европы, такие проблемы не возникают, поскольку уровень лактазы у них достаточно высок (разд. 7.3.1; [1924; 1922]).

В разд. 4.2.2.5 были описаны патологические состояния, вызванные нарушениями всасывания, переработки и утилизации предшественников коферментов (витаминов). Эти болезни можно лечить необычно высокими дозами конкретных витаминов. Однако с эволюционной точки зрения даже нормальная потребность в витаминах может рассматриваться как множественная

66 4 Действие генов

Рис. 4.31.А. Механизм отрицательной обратной связи между гипофизом и корой надпочечников. Кора надпочечников стимулируется гипофизарным гормоном АКТГ (АСТН), конечный продукт синтеза кортикостеронов - кортизол - ингибирует образование АКТГ, в то же время гонады стимулируются гормоном ФСГ (FSH) до тех пор, пока продуцируемые ими андрогены (или эстрогены) не ингибируют образование ФСГ Б. При адреногенитальном синдроме образование кортизола ингибируется вследствие генетического дефекта. Это оказывает двоякое воздействие на гипофиз. Образование АКТГ не ингибируется. Аномально высокое содержание АКТГ ведет к образованию избытка предшественников кортизола, которые подавляют образование ФСГ из-за их химического сходства с андрогенами. В результате происходит маскулинизация женщин. Введение кортизола восстанавливает нормальную обратную связь.

генетически обусловленная недостаточность, поскольку и Neurosporacrassa, и Е coliспособны синтезировать практически все витамины. L-аскорбиновая кислота (витамин С) играет роль мощного восстановителя в метаболизме млекопитающих и синтезируется почти всеми видами, за исключением человека, высших приматов и морских свинок Люди нуждаются в постоянном «лечении с помощью замещения», которое, к счастью, обеспечивается нормальным питанием Однако в исключительных ситуациях, например, в дальних плаваниях прошлых столетии, когда пища не содержала достаточного количества витамина С, развивалась цинга.

Другие метаболические пути, утраченные в ходе эволюции,-это пути синтеза так называемых, незаменимых аминокислот Для некоторых бактерий и грибов эти незаменимые для нас аминокислоты таковыми вовсе не являются, а могут синтезироваться из простых источников азота, таких как аммиак

До сих пор мы рассматривали диетическое лечение в основном редких, наслед-

4. Действие генов 67

ственных вариантов с ярко выраженными эффектами. Однако даже при простом измерении концентрации фенилаланина в сыворотке, кроме крайних, классических случаев ФКУ, обнаруживаются случаи легкой гиперфенилаланинемии. Для поддержания «нормального» в обычном понимании этого слова развития таким людям не нужно придерживаться специальной диеты. Однако имеются данные, указывающие на несколько повышенную подверженность болезням гетерозигот, у которых снижена активность фенилаланингидроксилазы. Если это подтвердится, можно будет сказать, что такая чувствительность зависит от количества избыточного фенилаланина, остающегося после удовлетворения нужд синтеза белка.

В разд. 6.1.2 мы обсудим генетический полиморфизм. Установлено, что треть всех находящихся в крови человека ферментов встречается в различных молекулярных формах, часто с неодинаковой активностью. Это означает, что метаболические пути слегка отличаются у разных индивидов (за исключением однояйцевых близнецов), т.е. человек «биохимически индивидуален» [225]. Одна из особенностей такой индивидуальности заключается в том, что для оптимального развития пищевые потребности разных людей могут слегка отличаться. Этот «генотрофический принцип» является частью взаимной адаптации индивида, его конкретной генетической конституции и окружающей его среды.

4.2.2.10. Необнаруженные дефекты ферментов

Сколько ферментов у человека и какие дефекты ферментов известны? Некоторые метаболические пути пока еще не выяснены. Поэтому никто не знает точного числа ферментов у человека. Согласно приблизительным оценкам, оно достигает по меньшей мере 10 000. Примерно для 200 ферментов, или для 2%, известны дефекты. Как быть с остальными 98%?

Во-первых, очевидно, что имеется большое количество наследственных заболеваний, которые, судя по всему, вызваны именно дефектами ферментов, но это пока не подтверждено с помощью соответствующих методик. Большинство аутосомнорецессивных заболеваний, перечисленных в каталоге Мак-Кьюсика, могут принадлежать к этой группе [133].

Какие дефекты ферментов неизвестны! Рис. 4.32 иллюстрирует нашу попытку сравнить основную группу метаболических путей [120], для которой известны многие дефекты ферментов, с другими группами, для которых известны лишь отдельные нарушения. Хорошо изучены дефекты ферментов:

а) катаболических путей углеводов (например, нарушения гликолиза при наследственной гемолитической анемии);

б) катаболических путей некоторых аминокислот (например, фенилкетонурия);

в) катаболических путей деградации строительного материала клеток и внутриклеточного материала в лизосомах (или, например, мукополисахаридозы);

г) катаболических путей детоксификации и выделения внутренних метаболитов (например, аргининемия);

д) некоторые конечные реакции на вспомогательных ответвлениях пути метаболизма нуклеиновых кислот (например, недостаточность по гипоксантин-гуанин—фосфорибозилтрансферазе);

е) анаболических путей синтеза биомолекул, необходимых для специальных регуляторных функций (например, дефекты образования тиреоидных гормонов);

ж) некоторых путей трансмембранного транспорта (например, цистинурия);

з) некоторых ферментов репарации ДНК (например, пигментная ксеродерма; разд. 5.1.6.3);

и) некоторых метаболических путей, связанных с потреблением и утилизацией предшественников коферментов (например, рахит, резистентный к витамину D).

Мы практически ничего не знаем о дефектах:

а) ферментов, связанных с процессами митоза и мейоза;

б) ферментов, необходимых для синтеза ДНК или РНК, за исключением нескольких ферментов, участвующих в репарации;

68 4 Действие генов

Рис. 4.32. Основные катаболические (темные стрелки) и анаболические (светлые стрелки) пути Большинство дефектов ферментов у человека, за исключением некоторых дефектов синтеза белка сыворотки, затрагивают катаболические пути [120]

в) ферментов, участвующих в биосинтезе белков;

г) систем запасания энергии, в особенности системы цитохромов;

д) ферментов, участвующих в синтезе веществ, используемых как нейромедиаторы в центральной и периферической нервных системах;

е) анаболических путей синтеза многих аминокислот, жиров и липидов;

ж) анаболических ферментов синтеза компонентов тканей, таких как сфинголипиды, муколипиды и мукополисахариды;

з) цикла трикарбоновых кислот, ферменты которого выполняют как катаболические, так и анаболические функции.

Короче говоря, наши знания ферментных дефектов у человека не только не полны, но и крайне односторонни. Чаще всего такие нарушения затрагивают собственные, так называемые «домашние» функции клетки. При этом для большинства главных анаболических функций никаких дефектов ферментов до сих пор не найдено Картина выглядит более полной для катаболических путей и для биосинтеза некоторых специализированных молекул, таких как гормоны.

Почему нам так мало известно о дефектах ферментов, участвующих в основных процессах образования структуры клеток? Действительно, почему? Отчасти это объясняется методическими трудностями. Легко получить клетки крови, но не печени и тем более мозга. Проблема доступности материала актуальна и для анализа генетического полиморфизма Большинство известных в настоящее время примеров полиморфизма касается именно различных компонентов крови. Если бы нашим органом мышления и чувств была кровь, а не мозг, наше невежество в области генетики поведения было бы давно преодолено (разд 6 2)

И все-таки вряд ли односторонность знаний в этой области можно полностью объяснить методическими трудностями

4. Действие генов 69

Скорее всего нарушения ферментов, которые участвуют в построении главных структур клетки, приводят к летальным эффектам. Например, трудно представить себе, что можно жить почти при полном отсутствии активности ДНК-полимеразы. Ведь такое нарушение вызвало бы снижение скорости или полное подавление репликации ДНК, а следовательно, и деления клетки. Это верно также для цикла трикарбоновых кислот или для синтеза жизненно важных метаболитов.

В большинстве случаев для сохранения нормальной функции достаточно 50% нормальной активности фермента. Об этом свидетельствуют данные, полученные для гетерозигот с ферментативными нарушениями. Для выявления таких гетерозигот необходимы крупномасштабные популяционные исследования. Следует учесть, однако, что для многих ферментов характерна выраженная межиндивидуальная вариабельность активности, которая затрудняет, а иногда просто сводит на нет попытки обнаружения гетерозигот. Эта вариабельность и в особенности тот факт, что 50%-ная активность у гетерозигот обеспечивает выживание в обычных условиях, показывают, что метаболизм обладает замечательным запасом прочности, позволяющим организму противостоять отклонениям. Важно и то, что многие функции в организме обеспечиваются различными метаболическими путями. Поэтому некоторые мутации, даже в гомозиготном состоянии, могут не приводить к врожденным нарушениям [820].

Вывод о том, что рецессивные летальные мутации, действующие на основные метаболические пути, возможны, имеет для популяционной генетики большое значение. Более того, нет никаких причин полагать, что мутации по таким генам, более редки, чем мутации, которые приводят к известным ферментативным дефектам. Логично предположить, что все такие мутации возникают. Иногда они оказываются в гомозиготном состоянии, что обусловливает гибель зиготы. Можно было бы ожидать, что в условиях, которые вообще способствуют возникновению гомозигот, т.е. при близкородственных браках, число выкидышей должно возрастать (разд. 6.3.1). Однако это предположение не подтверждается экспериментально. Возможно, большинство таких зигот погибает на столь ранней стадии развития, что это проходит незамеченным.

4.2.2.11. Некоторые общие выводы по анализу ферментативных нарушений у человека

Обнаружение дефектов ферментов. Анализ ферментативных нарушений у человека позволяет сделать несколько выводов. Чтобы дефект фермента можно было обнаружить, он должен проявляться в клетках крови или в культуре фибробластов. Более того, этот дефект должен приводить к четким клиническим симптомам или к изменениям, выявляемым при обычном обследовании (например, выделение необычных метаболитов с мочой). Врожденное нарушение с неспецифическими симптомами, которое не сопровождается легко регистрируемыми биохимическими отклонениями, не может быть обнаружено.

Значение ферментативных дефектов для прояснения метаболических путей. Не сложно обнаружить ферментативное нарушение, если уже известен тот метаболический путь, в котором этот фермент принимает участие. В некоторых случаях, наоборот, анализ ферментативных дефектов проливает свет на неизвестный еще метаболический путь, который трудно исследовать другим способом. Ярким примером могут служить мукополисахаридозы.

Характеристика мутаций, обусловливающих ферментативные нарушения у человека. Известно, что во многих случаях дефектные ферменты у человека сохраняют некоторую остаточную активность. Как правило, мутантный белок бывает изменен качественно. Например, он может превратиться в перекрестно-реагирующий материал (ПРМ), могут измениться его кинетические и другие характеристики. Эти данные свидетельствуют о том, что изменения белков происходят в результате мутаций в структурных генах, поскольку регуляторные мутации приводили бы только к коли-

70 4 Действие генов

чественным изменениям ферментной активности. Внутри каждого генного локуса существует высокая степень генетической гетерогенности, которая дополняет гетерогенность локусов, контролирующих один и тот же метаболический путь.

Тип наследования: гетерозиготы. Дефекты ферментов, как правило, наследуются рецессивно. Гены, детерминирующие эти нарушения, могут быть сцеплены с аутосомами или в некоторых случаях с Х-хромосомой. Активность ферментов у здоровых гетерозигот-носителей обычно вдвое меньше средней для популяции. Отсюда следует, что организм человека может прекрасно функционировать при наличии фермента, работающего в «полсилы». Этот факт указывает на существующие в принципе значительные возможности регуляции метаболических путей. Однако, если метаболический путь перегружен веществом, для утилизации которого требуется дефектный фермент, способность организма перерабатывать избыточный метаболит может быть снижена по сравнению с гомозиготами. Есть данные, свидетельствующие о том, что подобные нарушения не безразличны и для гетерозигот. Возможно, именно онипричина большей предрасположенности гетерозигот к обычным соматическим и психическим заболеваниям. В настоящее время систематические широкомасштабные обследования гетерозигот по рецессивным генам, особенно в среднем и пожилом возрасте, почти не проводятся. Причина состоит в том, что с врожденными дефектами обычно имеют дело педиатры или медицинские генетики с педиатрическим образованием, т.е. специалисты, не заинтересованные в эпидемиологических или популяционных исследованиях. С другой стороны, популяционные генетики, как правило, не вникают в биохимические тонкости.

Тот факт, что почти все дефекты ферментов наследуются как рецессивные признаки, неизбежно заставляет задуматься о биохимической основе доминантных нарушений. Мы обсудим эту проблему в разд. 4.6. Теперь же перейдем к изложению данных о строении и генетике гемоглобинов. Именно эти данные помогли ответить на многие вопросы, связанные с дефектами ферментов, и в какой-то степени прояснили возможные механизмы менделевской доминантности.

4.3. Гемоглобин человека [119; 31; 97а]

Молекулу гемоглобина изучать легче, чем молекулу любого другого белка человека. Гемоглобин – основной белок эритроцитов, и для его выделения не требуется сложных биохимических методов. Неудивительно поэтому, что именно об этом белке мы знаем больше, чем обо всех остальных. Исследования по генетике гемоглобина человека, изучение аминокислотной последовательности и структуры его молекулы продвигались очень быстро. В молекулярной генетике человека они сыграли такую же роль, как изучение дрозофилы и бактериофагов в общей генетике. Большинство концепций, разработанных для этой системы, являются общими для других белков. Действительно, многие концептуальные принципы генетики человека можно иллюстрировать примерами из генетики гемоглобина.

4.3.1. История изучения гемоглобина

Серповидноклеточная анемия – «молекулярное» заболевание. Изучение гемоглобина человека началось с открытия наследственного заболевания – серповидноклеточной анемии. В 1910 г. Херрик [1121] обнаружил у студента-негра, страдающего анемией, особую аномалию эритроцитов: они были серповидной формы. Вскоре выяснилось, что такая патология довольно часто встречается у американских негров. Больные страдали от гемолитической анемии и частых болей в кишечнике и скелетных мышцах. Было показано, что больные серповидноклеточной анемией гомозиготны по гену, который в гетерозиготном состоянии (примерно у 8% американских негров) вызывает гораздо менее выраженное отклонение: присутствие в крови некоторого количества серповидных эритроцитов [1226].

Решающую роль в биохимическом и генетическом анализе этой болезни сыграла работа выдающегося химика Полинга,

4 Действие генов 71

Рис. 4.33. Диаграмма зонального электрофореза гемоглобинов при рН = 6,9. А Нормальная гомозигота (АА) Б Больной с серповидноклеточной анемией (SS) В Признак серповидноклеточности (AS) Г Смесь равных количеств гемоглобина А и гемоглобина S [1260] Стрелка указывает на стартовую точку электрофореза

опубликованная под программным заголовком «Серповидноклеточная анемия, молекулярное заболевание» [1260] (Полинг узнал об этой болезни от Кастла, известного гематолога и сына одного из пионеров генетики млекопитающих, и предположил, что ее причиной может быть дефект гемоглобина ) Он писал

«Данные, имевшиеся к началу нашей работы, указывали, что процесс образования серповидных эритроцитов может быть тесно связан с состоянием и природой гемоглобина в эритроцитах»

Авторы исследовали гемоглобин людей, в крови которых обнаруживались серповидные эритроциты, гемоглобин больных серповидноклеточной анемией и гемоглобин здоровых людей В работе использовали самый совершенный в то время метод анализа белков – зональный электрофорез по Тизелиусу (рис 4 33) Пики на рисунке соответствуют градиентам концентрации гемоглобина в определенном буфере, расположение этих пиков зависит от соотношения положительных и отрицательных зарядов в молекуле белка

«Результаты указывают на существование значительных различий в электрофоретической подвижности гемоглобина, выделенного из эритроцитов здоровых людей, и гемоглобина, выделенного из эритроцитов больных серповидноклеточной анемией»

У людей, в крови которых наряду с нормальными имеются и серповидные эритроциты, обнаружено 25-40% аномального гемоглобина, такого же как у больных серповидноклеточной анемией, остальной гемоглобин был неотличим от гемоглобина нормальных индивидов Эти данные подтверждали предположение о том, что больные серповидноклеточной анемией гомозиготны по гену, который находится в гетерозиготном состоянии у людей с признаком серповидноклеточности

«Эта работа показала, что молекула белка меняется при аллельном изменении единственного гена, контролирующего его синтез»

Замена одной аминокислоты В 1956 г Ингрэм работал в Кэмбридже, в той лаборатории, где до этого Перутц исследовал кристаллографию белков, Сэнгер определил аминокислотную последовательность инсулина, а Крик и Уотсон предложили свою модель структуры ДНК Ингрэму удалось точно определить, чем нормальный гемоглобин отличается от серповидноклеточного [1138] При гидролизе молекулы глобина трипсином, расщепляющим белки, образуется около 60 пептидов, которые были разделены в двумерной системе на бумаге в одном направлении с помощью электрофореза, а в другом – с помощью хроматографии Этим методом (его называют методом «отпечатков пальцев») удалось показать, что гемоглобин серповидных эритроцитов отличается от нормального по подвижности единственного пептида При дальнейшем анализе этого пептида выяснилось, что гемоглобин серповидных эритроцитов отличается от нормального только по одной аминокислоте, глутамино-

72 4. Действие генов

вая кислота в определенном положении заменена валином.

В молекуле глутаминовой кислоты по сравнению с молекулой валина имеется дополнительная карбоксильная группа. Эта разница в зарядах и обусловливает различия в электрофоретической подвижности нормального и серповидноклеточного гемоглобина.

Впоследствии, по мере совершенствования методов электрофореза, стали выявляться все новые и новые варианты гемоглобина. В настоящее время их известно более 400 [1194]. Следующими вехами в изучении гемоглобина следует считать установление его полной аминокислотной последовательности (Браунитцер и др., 1961) [1016] и трехмерной структуры [1165; 1265]. Позже стали понятны структурнофункциональные взаимоотношения, были обнаружены различные типы мутаций: делеции и сдвиг рамки считывания. Выделение мРНК гемоглобина позволило по-новому взглянуть на структуру и функционирование гена, открыло новые пути к пониманию механизма его действия.

Исследования гемоглобинов на молекулярном уровне продвигались очень быстро. В настоящее время известны полные нуклеотидные последовательности ряда генов гемоглобинов вместе с фланкирующими их последовательностями, мы хорошо понимаем организацию гемоглобиновых генов, изучена природа мутаций, затрагивающих гемоглобины, в особенности при талассемиях. Следующий раздел посвящен генетике гемоглобинов.

4.3.2. Генетика гемоглобина

Молекулы гемоглобина. Молекула человеческого гемоглобина состоит из четырех полипептидных цепей. Молекула гемоглобина обозначается общей формулой α2β2, которая показывает, что в состав молекулы входят две пары сходных цепей глобина [1348]. Большинство разновидностей гемоглобина человека имеют идентичные α-цепи и различаются по другим цепям. К каждой цепи глобина в специфическом участке присоединяется молекула небелковой природы - гемогруппа, или гем (рис. 4.34). Четыре глобиновые цепи, каждая со своим гемом, образуют функциональную молекулу гемоглобина, которая переносит кислород из легких в ткани. Молекула глобина построена из 140 с небольшим аминокислот, которые расположены в строго определенном порядке (рис. 4.35). Последовательность аминокислот в белке (например, в гемоглобине) считают его первичной структурой. Пространственное расположение соседних остатков называется вторичной структурой, а трехмерное расположение белковых субъединиц - третичной структурой (рис. 4.34). Термин четвертичная структура относится к взаимной организации четырех субъединиц в составе функционирующей молекулы.

Преобладающим типом гемоглобина у детей и взрослых является НbА, или гемоглобин взрослых (α2β2). Его отличительная черта - строение Р-цепи (рис. 4.35). α- и β-цепи различаются по многим аминокислотным остаткам. У всех взрослых есть небольшое количество (2-3%) гемоглобина НbА22δ2). Характерная для него δ-цепь отличается от β-цепи только по десяти аминокислотным остаткам. После рождения у всех детей обнаруживается также небольшое количество (меньше 1%) фетального гемоглобина HbF:α2γ2 (см. ниже), γ-цепь значительно отличается от α- и β-цепей. α-цепи НbА, НbА2 и HbF идентичны.

Существует несколько типов гемоглобинов, характерных для эмбрионального и фетального развития, ζ-цепи напоминают по аминокислотному составу α-цепи [1155], а ε-цепи похожи на β-цепи [1232]. ζ-цепи, вероятно, появляются раньше других в эмбриональном развитии. ζ- и ε-цепи исче-

4. Действие генов 73

Рис. 4.3.1. Диаграмма показывает трехмерное строение (3° структура) типичной глобиновой цепи, состоящей из восьми спиральных и шести неспиральных участков. Чтобы упростить сравнение различных глобиновых цепей, их спиральные фрагменты обозначены буквами от А до Н, а неспиральные участки - двумя буквами, например CD, FG и т. д. Черной волнистой линией показано пространственное расположение различных аминокислот (2° структура). Аминокислоты пронумерованы с N-конца, начиная с А1. Номер относится к конкретной аминокислоте, расположенной в данном положении, это могут быть разные аминокислоты в различных глобиновых цепях. Структурно эквивалентные остатки одинаково обозначаются во всех гемоглобинах независимо от вставки или делеции аминокислот. Обратите внимание на вставку небелковой цепи гема между Е7 и Е8. Аминокислотные остатки в позициях Е7 (гистидин), Е11 (валин) и HS2 (тирозин) особенно важны для функционирования гемоглобинов млекопитающих. Буквы М, V и Р в молекуле гема обозначают соответственно метиловую, виниловую и пропионовую боковые цепи [1265].

зают через 8-10 недель внутриутробного развития (рис. 4.36) [1364]. Затем преобладающим становится гемоглобин HbF(α2γ2), который отличается от других присутствием γ-цепи. Известно два типа γ-цепей: с аланином (Аγ) или с глицином (Gγ) в 136-м положении. Существует и третий тип γ-цепи с треонином вместо изолейцина в 75-м положении [1281; 1319]. Он встречается у 10-15% эмбрионов и, судя по всему, не связан с каким-либо нарушением. Гемоглобин α2β2 обнаруживается уже на 6-8 неделе развития плода [1319; 1364].

Синтез γ-цепей у эмбриона происходит в основном в печени и селезенке, но могут они синтезироваться и кроветворными клетками костного мозга. Наоборот, β-цепи, в детстве и в более зрелом возрасте синтезируются главным образом в костном мозге, однако синтез вне костного мозга также возможен [1364]. Различные типы гемоглобина перечислены в табл. 4.12.

Все нормальные гемоглобины человека, которые были исследованы, имеют идентичную трехмерную структуру (рис. 4.34), существенную для переноса кислорода. Все

74 4 Действие генов

Рис. 4.35. Первичная структура аминокислотной последовательности β-цепи нормального гемоглобина взрослого человека (гемоглобина А). Аминокислоты, участвующие в образовании характерных участков α-спирали, заключены в квадраты. Остатки аминокислот, не участвующие в образовании спирали, заключены в вытянутые прямоугольники. Показано место прикрепления гема. Специфическую аминокислотную последовательность β-глобиновой цепи полезно сопоставить с трехмерным строением молекулы, показанным на рис. 4.34.

Рис. 4.36. Онтогенез цепей гемоглобина человека до рождения и в первые несколько месяцев после рождения. Верхняя диаграмма отражает изменения синтеза различных цепей глобина в ходе развития. Нижняя диаграмма указывает на характерные места эритропоэза, меняющиеся в ходе развития. Наблюдается замечательное совпадение во времени синтеза ε- и ζ-цепей и эритропоэза в желточном мешке, синтеза γ-цепи и эритропоэза в печени и селезенке, синтеза β-цепи и эритропоэза в костном мозге [1230].

4 Действие генов 75

Таблица 4.12. Гемоглобины человека

Стадия

Гемоглобин

Структура

Эмбрион

Gower I

Gower II

Portland I

Плод

F

Взрослый

A

человек

глобиновые цепи различных гемоглобинов имеют общее эволюционное происхождение и возникли в результате последовательных дупликаций генов (см. разд. 7.2.3). Чем больше сходство между двумя цепями, тем позднее в эволюции произошла дупликация. Очевидно, цепи Аγ и Gγ, которые различаются по одной аминокислоте, дивергировали позже всех других, а дупликация генов β- и α-цепей произошла в весьма отдаленном прошлом.

Гены гемоглобина. Аминокислотная последовательность каждой глобиновой цепи кодируется своим собственным геном. В гаплоидном наборе у нормального человека присутствует по крайней мере по одному гену α, β, γ, δ, ε, ζ, и по крайней мере по два таких гена-в диплоидном наборе. В большинстве популяций человека ген α-цепи существует в дуплицированном состоянии, причем отличий между двумя α-генами не обнаружено [1350]. Имеются два гена γ-цепей Аγ и Gγ, которые различаются по кодону, детерминирующему аминокислотный остаток в 136-м положении. Некоторые гены Аγ несут необычный кодон, в результате в 75-м положении изолейцин замещен на треонин (TАγ).

Синтез небелковой гемогруппы также контролируется генами, поскольку они кодируют ферменты, обеспечивающие биосинтез гема.

Различные гены глобинов, соответствующие им глобиновые цепи и различные нормальные гемоглобины приведены в табл. 4.12 и на рис. 4.37.

Была подробно исследована структура всех генов глобинов, опубликованы их полные нуклеотидные последовательности [981; 1041; 1200; 1273; 1304; 1314]. Подобно многим генам млекопитающих, гены глобинов у человека образуют мультигенное семейство и расположены на хромосомах в составе двух кластеров (рис. 4.38, 4.39). α-кластер глобиновых генов занимает 25000 пар оснований (25 т. п. н.) в коротком плече 16-й хромосомы. Семейство γ-β-δ-генов глобина расположено в коротком плече 11-й хромосомы на участке длиной 60 т. п. н. Пока остается неизвестным генетический механизм, регулирующий координированное функционирование генов на двух различных хромосомах, в результате которого образуется равное количество субъединиц α- и β-у-типа. В α-кластере структурные гены расположены в следующем порядке в направлении от 5' к 3': ген эмбриональной ζ-цепи, псевдоген ζ-цепи,

Рис. 4.37. Нормальные глобиновые гены человека. Цепи β-, δ-, ε- и ζ-глобинов кодируются уникальными генами. Гены, кодирующие цепи аи у-глобинов, дуплицированы. Две γ-цепипродукты генов НbАγ и HbGγ-отличаются друг от друга по одному аминокислотному остатку, аланину (А) или глицину (G) в положении 136. Не обнаружено различий между двумя генами Нbα. Тетрамеры, образующиеся при формировании гемоглобина, показаны в нижней части рисунка.

76 4. Действие генов

Рис. 4.38. Расположение на хромосоме (16р) и организация а-глобинового кластера человека. Ψ, псевдоген; IVS, интроны (вставочные последовательности, обозначенные белыми прямоугольниками). 31, 32, 99 - число пар оснований в интронах [972].

Рис. 4.39. Расположение на хромосоме (11р) и организация β-глобинового кластера человека. Обозначения см. на рис. 4.38 [972].

псевдоген α-цепи и два идентичных гена α-цепи (рис. 4.38). Выяснено расположение генов и в β-кластере: ген эмбриональной ε-цепи, два гена фетальных γ-цепей (Аγ и Gγ), псевдоген β-цепи, ген δ-цепи и ген β-цепи (рис. 4.39). Порядок расположения генов в этих кластерах совпадает с очередностью их экспрессии в онтогенезе. По последовательности нуклеотидов псевдогены мало отличаются от своих функциональных гомологов. Однако в результате различных мутаций стала невозможной их транскрипция и, следовательно, экспрессия. Предполагается, что псевдогены возникли в результате дупликации, после которой их экспрессия перестала быть необходимой для нормального функционирования организма. Ген δ-глобина, продукт которого составляет лишь 2-3% всего гемоглобина, можно считать геном, который находится в переходном состоянии к псевдогену.

Все глобиновые гены во многом сходны по своей функциональной организации. Каждый из них имеет в составе три кодирующие последовательности, т. е. три экзона. Между 1-м и 2-м экзонами и между 2-м и 3-м экзонами расположены уникальные вставочные последовательности, или интроны, известные соответственно как IVS-1 и IVS-2 (от англ. intervening sequences) (рис. 4.38, 4.39, 4.40). Интроны транскрибируются вместе с экзонами, так что в первичном транскрипте представлены как кодирующие, так и некодирующие последовательности соответствующего гена. Вставочные последовательности вырезаются в ходе процессинга, который происходит в ядре, в результате конец первого экзона соединяется с экзоном 2, а конец второго экзона - с экзоном 3, при этом образуется функциональная мРНК, которая и служит матрицей для синтеза гемоглобина на рибосомах (рис. 4.40). Две вставочные последовательности идентичны у различных генов γ-δβ-кластера, но отличаются от более коротких интронов генов α-кластера. Детали процесса сплайсинга пока не ясны, однако для его изучения оказались весьма полезными мутации, которые вызывают β-талассемии (см. ниже) и обусловлены нарушениями вырезания интронов. Все интроны начинаются с нуклеотидов GT (донорный сайт) и кончаются динуклеотидом AG (акцепторный сайт) - эти динуклеотиды состав-

4. Действие генов 77

Рис. 4.40. Схематическое изображение гена Нbβ, первичного транскрипта этого гена, мРНК Нbβ и полипептидной цепи β-глобина. Показаны регуляторные последовательности, экзоны и интроны Последовательность poly (А) добавляется к транскрипту, интроны вырезаются.

Рис. 4.41. Краткая схема этапов синтеза белка на примере гемоглобина. Нуклеотиды ДНК гена гемоглобина транскрибируются (транскрипция) ферментом РНК-полимеразой с образованием гетерогенной ядерной РНК (гяРНК) Интроны, поскольку они не содержат структурную информацию, вырезаются. мРНК переносится из ядра (темно-серое) в цитоплазму (светло-серая), где на рибосомах осуществляется синтез глобинов (трансляция). Он делится на следующие этапыинициацию, элонгацию и терминацию. К образующейся в результате трансляции полипептидной цепи глобина присоединяется гем. Четыре глобиновые цепи объединяются, образуя функциональную молекулу гемоглобина.

ляют часть так называемых обобщенных последовательностей сайтов сплайсинга. Более подробно см. в [1041 и 1238]. Некоторые детали этапов синтеза гемоглобина (от гена до белковой молекулы) представлены на рис. 4.40 и 4.41.

Генетические доказательства несцепленности генов α- и β-глобинов появились задолго до определения структуры кластеров этих генов. Было показано, что если один из родителей является двойной гетерозиготой с мутациями в генах α- и β-глобинов, а другой - нормальной в отношении гемоглобина гомозиготой, то в потомстве выявляются четыре фенотипа: нормальный, с измененным α-глобином, с измененным β-глобином и двойной мутант (рис. 4.42)

78 4. Действие генов

Рис. 4.42. Генетический анализ потомства от брака двойной гетерозиготы по Hbα (αHopkins-2) иHbβ (Hbβs) с нормальным индивидом. Поскольку гены Hbα и Hbβ расположены в разных хромосомах, возникают всевозможные комбинации хромосом и в потомстве обнаруживаются четыре класса в равном соотношении: нормальный Hb A; Hb A/S; признак серповидноклеточности; Hb A/Hb Hopkins-2: признак Hopkins-2; гетерозиготность Hb S/Hb Hopkins-2 проявляется так же, как у больного родителя. Если бы гены Hbα и Hbβ были тесно сцеплены, родительские фенотипы наблюдались бы в незначительной доли потомства, возникая только в результате мейотической рекомбинации (разд. 3.4). Чем теснее сцепление, чем меньше вероятность рекомбинации (см. рис. 4.43).

[1014]. Если бы гены α- и β-глобинов были тесно сцеплены, то в потомстве наблюдались бы генотипы Hbαx и НbβХ, но не было бы двойных мутантов или нормальных индивидов. Подобным образом генетически доказано тесное сцепление генов δ- и β-глобинов: если один из родителей был двойной гетерозиготой с мутациями в генах β- и δ-цепей, то рекомбинантов среди детей не было [1013] (рис. 4.43). Открытие гемоглобина Lepore - продукта слияния генов δ- и β-цепей - послужило биохимическим доказательством сцепления этих генов в составе одной хромосомы [1350] (см. ниже). Вывод о сцеплении генов γ- и β-глобинов был сделан на основании исследований гемоглобина Kenya, ген которого образуется при слиянии этих двух генов.

Промоторы. Перед каждым глобиновым геном расположены три различные последовательности. Они близки по структуре у разных генов и, судя по всему, участвуют в регуляции транскрипции (рис. 4.40). Их называют промоторными элементами [1041; 1238]. В их число входит ТАТА или АТА-блок (последовательность Хогнесса), который находится на расстоянии в 30 пар нуклеотидов от точки начала транскрипции. Эта последовательность представляет собой элемент промотора, необходимый для точной инициации транскрипции. Другая последовательность, СААТ, расположенная за 80 пар оснований от стартовой точки, служит сайтом узнавания для РНКполимеразы. Третий, дистальный, элемент локализован за 80-100 нуклеотидов, имеет характерную последовательность PuCPuCCC (Pu-пурин). До сих пор неизвестно, требуются ли для образования глобинов «энхансеры» (усилители)-генетические элементы, влияющие на эффективность транскрипции независимо от их позиции или ориентации.

Последовательности, расположенные за геном. Терминация транскрипции осуществляется примерно через 1000 пар оснований после 3-го экзона гена β-глобина (рис. 4.40). Сигналом расщепления РНК эндонуклеазой служит последовательность AAUAA, к которой затем присоединяется polyA-«хвост» длиной в 220 нуклеотидов. Она не

4. Действие генов 79

Рис. 4.43. Генетический анализ потомства от брака двойной гетерозиготы по Hbβ (HbβS) и Нbδ (НbδВ2) с нормальным индивидом. Очевидно, что гены β- и δ-цепей расположены на одной хромосоме и тесно сцеплены. Все потомки наследуют либо аномалию βS, либо δВ2. Среди детей не наблюдается нормальных индивидов или сложных гетерозигот, аналогичных родительскому типу. Эти данные согласуются с выводом о тесном сцеплении двух генов.

закодирована в ДНК и необходима для стабилизации мРНК, которая переносит генетическую информацию от ядерных генов к рибосомам, где в результате соединения аминокислот в нужной последовательности происходит синтез глобинов (рис. 4.41).

Полиморфизм ДНК в области глобиновых генов. [972; 1253]. При картировании генов γ-δ-β-кластера с помощью рестрикционного анализа была обнаружена значительная вариабельность последовательности ДНК у различных индивидов (рис. 4.40). Все известные варианты β-глобинового комплекса генов возникли в результате одиночных нуклеотидных замен и обозначаются как присутствующие ( + ) или отсутствующие ( —). Среди 17 полиморфных сайтов в β-кластере 12 локализованы во фланкирующих последовательностях, 3 внутри интронов, 1 внутри псевдогена и только 1 внутри кодирующей части гена р-глобина (синонимическая замена). Такое расположение закономерно, поскольку мутации в кодирующих областях скорее могут вызвать нежелательные эффекты. Большая часть ДНК, расположенной между структурными генами, не экспрессируется, поэтому изменения нуклеотидной последовательности в этих районах обычно не имеют функциональных последствий. Различные полиморфные сайты имеют древнее происхождение, поскольку они обнаружены у всех расовых групп (табл. 4.13). Заметим, однако, что некоторые варианты встречаются только у негров, у других расовых групп их нет.

Два случая полиморфизма ДНК в α-глобиновом локусе относятся к гипервариабельным районам, состоящим из различного числа случайно повторенных фрагментов ДНК длиной 36 нуклеотидов (разд. 2.3.3.9).

Специфическое сочетание полиморфных сайтов в генном кластере (или генетическом локусе) называется гаплотипом. Например, расположение пяти сайтов возможного полиморфизма можно записать как + – + – + в направлении от 5' к 3'. Совокупность четырех основных гаплотипов, различающихся между собой минорными вариациями в 5 сайтах гена β-глобина, (табл. 4.14) была названа «остов».

Отличительной чертой вариабельности ДНК в β-глобиновом кластере является неравновесие по сцеплению полиморфных сайтов. Если бы в течение многих поколений происходила свободная рекомбинация, сочетание полиморфных сайтов было бы случайным, а число различных гаплотипов составило 2n, где n - количество возможных сайтов полиморфизма. В действительности обнаруживается лишь несколько гаплоти-

80 4. Действие генов

Таблица 4.13. Частоты сайтов полиморфизма ДНК в β-глобиновом кластере у различных региональных групп (по [972])

Полиморфизмы

Греки

Негры США

Население Юго-Восточной Азии

Taq I (I)1»

1,00

0,88

1,00

Hinc II (2)

0,46

0,10

0,72

Hind III (3)

0,52

0,41

0,27

Hind III (4)

0,30

0,16

0,04

Pvu II (5)

0,27

Hinc II (6)

0,17

0,15

0,19

Hinc II (7)

0,48

0,76

0,27

Rsa I (8)

0,37

0,50

Taq I (9)

0,68

0,53

Hinf I (10)

0,97

0,70

0,98

Rsa I (11)

Hgi A (12)

0,80

0,96

0,44

Ava II (13)

0,80

0,96

0,44

Hpa I (14)

1,00

0,93

Hind III (15)

0,72

0,63

BamH I (16)

0,70

0,90

Rsa I (17)

0,37

0,10

1) Номер в скобках соответствует обозначению сайтов рестрикции на рис. 4.44.

пов. Например, имеет место сильное неравновесие по сцеплению восьми сайтов полиморфизма в 5'-фланкирующей области гена δ-глобина (сайты 1-8 на рис. 4.44), вследствие чего 94% всех хромосом в популяции содержит лишь четыре гаплотипа из всех возможных. Сходным образом, для пяти других полиморфных сайтов, локализованных в гене β-глобина и его 3'-фланкирующей области (сайты 12-17 на рис. 4.44), только четыре гаплотипа на участке длиной 18 т.п.н. характеризуют 90% всех хромосом. При сравнении этих двух кластеров полиморфных сайтов неожиданно оказалось, что их сочетания полностью подчиняются случайному распределению. Проще всего это можно объяснить, предположив, что между кластерами имеется горячая точка рекомбинации - участок, в котором рекомбинация происходит с высокой частотой. Такая рекомбинация уже продемонстрирована в одной из семей. Точные границы этой области с высокой частотой рекомбинации пока не определены.

Варианты гемоглобинов.Варианты гемоглобина возникают вследствие различных мутационных событий в конкретном глобиновом гене. Чаще всего разные варианты гемоглобина отличаются друг от друга одной аминокислотой в глобиновой цепи. Описано около 350 таких единичных замен [119]. Эти аминокислотные замены вызываются замещением всего одного нуклеотида в триплете. Например, при замене GUA и GAA смысл кодона меняется и место валина в глобиновой цепи занимает глутаминовая кислота (рис. 4.45). Если новая аминокислота отличается от исходной по заряду, измененный гемоглобин будет аномальным по электрофоретическим свойствам. Мутации, которые не влияют на заряд полипептида, обычно удается обнаружить

Таблица 4.14. Варианты последовательности нуклеотидов гена β-глобина и их частоты [972; 1253]

Обозначения

Второй кодон

Второй интрон

Частота (%)

Позиция

Население — Средиземноморья

Негры США

Население Юго-Восточной Азии

16

74

81

666

1

САС

С

G

С

Т

53

79

18

2

САС

С

Т

С

Т

28

12

35

3-Монголоиды и негры

CAT 1)

G

Т

С

С

9

47

3

CAT1)

G

Т

Т

С

19

1) Мутация, которая не изменяет смысла триплета.

4 Действие генов 81

Рис. 4.44. Полиморфизм сайтов узнавания рестрикционных эндонуклеаз в генах Нbβ (вверху) и Нbα (внизу). Номерами обозначены сайты рестрикции различных ферментов. HVR-гипервариабельные районы (минисателлиты) (таблица 4.14).

только в том случае, если они существенно нарушают функционирование гемоглобина и приводят к болезни. Большинство мутаций гемоглобина независимо от того, меняют они заряд молекулы или нет, не влияют на функции гемоглобина и не приводят к патологии. Как правило, аминокислотные замены в участках полипептидной цепи, которые в молекуле гемоглобина обращены наружу, оказывают меньшее воздей-

Рис. 4.45. Полиморфизм кодонов. Обычно 67-й аминокислотой в цепи β-глобина является валин. Гемоглобин Bristol и гемоглобин Milwaukee возникли в результате различных мутаций, в одном случае валин заменен на глутаминовую кислоту (Hb Bristol), в другом - на аспаргиновую кислоту (Hb Milwaukee). Триплеты, кодирующие валин, показаны в нижней части рисунка Мутация, приводящая к замещению валина на аспаргиновую кислоту, могла быть только заменой GUU на GUG, а замещение валина на глутаминовую кислоту - только заменой GUA на GUG. Следовательно, исходные индивиды, у которых произошли указанные мутации, различались по 67-му кодону валина β-цепи глобина.

ствие на функцию, чем замены аминокислот во внутренних частях цепей или в участках присоединения тема. Замены, нарушающие нормальную спиральную структуру цепи, часто вызывают нестабильность гемоглобина. Замены аминокислот в участках, которыми субъединицы контактируют друг с другом, влияют на сродство к кислороду [1320]. Большинство гемоглобиновых вариантов-редки. Лишь немногие, например гемоглобины HbS, HbC иНbЕ, встречаются чаще других (разд. 6.2.1.6).

В кодирующей области гена полиморфизм тоже регистрируется. Известно, что генетический код - вырожденный (табл. 2.12), т. е. несколько триплетов кодируют одну и ту же аминокислоту (см. рис. 4.45). Анализ двух различных замен в 67-м положении цепи β-глобина (рис. 4.45) показал, что два индивида, у которых произошли мутации, и появились новые формы гемоглобина, должны были различаться по исходным триплетам, кодирующим валин в 67-м положении (рис. 4.45). Таким образом, у разных индивидов различные кодоны могут кодировать одну и ту же аминокислоту.

Клиническое значение вариантов гемоглобина. Нарушение функций гемоглобина ведет к возникновению различных заболеваний. Существуют четыре основных типа болезней гемоглобина: 1) гемолитические анемии, вызванные нестабильностью гемоглобинов; 2) метгемоглобинемии, обусловлен-

82 4. Действие генов

ные ускоренным окислением гемоглобина; 3) эритроцитоз, вызванный нарушением сродства гемоглобина к кислороду и 4) серповидноклеточные нарушения как следствие повреждений клеточных мембран гемоглобином S. Во всех случаях, кроме серповидноклеточных нарушений, гетерозиготы по аномальным гемоглобинам страдают различными заболеваниями, т. е. мутации ведут себя как аутосомно-доминантные.

Нестабильные гемоглобины [31; 1335-1357]. Описано свыше 100 нестабильных гемоглобинов. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Клинические проявления варьируют от едва заметной нестабильности, практически не имеющей клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. В некоторых случаях гемолиз усиливается при лечении сопутствующих заболеваний сульфониламидами. Нестабильность этих гемоглобинов часто обусловлена преждевременной диссоциацией тема и глобиновой цепи. Такие лишенные гема молекулы глобина преципитуруют внутри клетки, образуя так называемые тельца Хейнца, нарушающие функционирование клеточных мембран. В селезенке тельца Хейнца могут быть удалены из эритроцитов без их разрушения. В конечном итоге такие эритроциты преждевременно уничтожаются ретикуло-эндотелиальной системой. При некоторых формах нестабильности гемоглобина сильный гемолиз удается смягчить удалением селезенки.

Точный диагноз нестабильности гемоглобина может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В этом случае необходимо выделение преципитированных глобиновых цепей для дальнейшего анализа в специализированных лабораториях. Нестабильные гемоглобины являются причиной врожденных несфероцитарных гемолитических анемий. Такие гемоглобины могут возникать в результате новых мутаций.

Метгемоглобинемия, обусловленная гемоглобином М [31]. Гемоглобин М интересен с исторической точки зрения, так как это первая доминантная гемоглобинопатия, выявленная в 1948 году в семье с врожденным цианозом [1130]. Любопытно, что рецессивная недостаточность метгемоглобин-редуктазы, которая также приводит к метгемоглобинемии, была первым изученным дефектом фермента у человека [1100]. Таким образом, метгемоглобинемия может быть вызвана как доминантной мутацией самого глобина, так и рецессивно наследуемой недостаточностью соответствующего фермента.

Известно пять различных мутаций, приводящих к образованию гемоглобина М. Собственно метгемоглобинемия обусловлена ускоренным окислением двухвалентного железа до трехвалентного (табл. 4.15). В четырех случаях образование гемоглобина М вызвано заменой одного из гистидинов, удерживающих группу гема в ее специфическом «кармане» (рис. 4.34) в глобиновой молекуле и стабилизирующих железо гема в его окисленной форме, на тирозин. Пятая мутация - гемоглобин Milwaukee 1 - пока не может быть достаточно четко объяснена с молекулярной точки зрения. Больные с мутациями в α-цепи, вызывающими образование гемоглобина М, страдают цианозом от рождения. При мутации в β-цепи цианоз развивается только через 6

Таблица 4.15. Гемоглобины М

1) Классический гемоглобин М Horlein и Weber [1130].

4 Действие генов 83

Рис. 4.46. Кривая диссоциации О2 для гемоглобинов с повышенным сродством к кислороду. Обратите внимание, что аномальный Hb Ramer при низких парциальных давлениях кислорода высвобождает меньше кислорода, чем нормальный гемоглобин. Возникает тканевая гипоксия, стимулирующая образование эритропоэтина с последующим эритроцитозом.

месяцев после рождения, когда происходит замена γ-цепи на β-цепь. У больных с гемоглобином М обычно наблюдается слабый гемолиз.

Эритроцитоз, вызванный образованием гемоглобинов с нарушенным сродством к кислороду [31, 992]. Существует около 30 гемоглобинов с повышенным сродством к кислороду. В 11 случаях мутации происходят в месте контакта α1β1-субъединиц в тетрамере. При адсорбции кислорода происходит движение глобиновых субъединиц в месте контакта между цепями. Повышенное сродство к кислороду может быть вызвано стабилизацией «окси»-конформации или дестабилизацией «дезокси»-конформации (рис. 4.46). Большинство других гемоглобинов с высоким сродством к О2 содержат мутации на СООН-конце β-цепи или в сайтах связывания дифосфоглицерата. В норме эти сайты обеспечивают стабильность «дезокси»-конформации.

Повышенное сродство к кислороду приводит к уменьшению количества кислорода, освобождающегося из комплекса с гемом в тканях организма, и вызывает гипоксию (рис. 4.46). Гипоксия ведет к выделению гормона эритропоэтина, стимулирующего образование эритроцитов и собственно эритроцитоз. Больные с эритроцитозом, обусловленным аномалиями гемоглобина, иногда ошибочно диагностируются как больные истинной полицитемией. Однако в отличие от полицитемии при дефектах гемоглобина наблюдается доминантное наследование, а спленомегалия, лейкоцитоз и тромбоцитоз отсутствуют. Известны спорадические случаи подобных дефектов гемоглобина, показано, что они возникли в результате новых мутаций.

Было обнаружено всего три гемоглобина с уменьшенным сродством к кислороду [992]. При таком дефекте количество кислорода, поступающее в ткани, увеличивается, поэтому следует ожидать уменьшения образования эритропоэтина. В двух случаях, как и следовало ожидать, наблюдалась слабовыраженная анемия.

Серповидноклеточные нарушения [31; 1211; 1298]. Образование гемоглобина S вызвано заменой глутаминовой кислоты на валин в 6-м положении β-цепи. В отличие от всех других замен, эта сильно влияет на растворимость и кристаллизацию гемоглобина в условиях гипоксии. Больные серповидноклеточной анемией наследуют мутантный ген от обоих родителей и не имеют гемоглобина А. При сравнительно низком уровне гипоксии гемоглобин S у таких больных полимеризуется с образованием пучков или волокон. Аномальные кристаллы гемоглобина нарушают структуру мембраны эритроцитов и обусловливают их серповидную форму (рис. 4.47). Некоторые из этих клеток остаются необратимо серповидными и преждевременно разрушаются. Серповидные клетки увеличивают вязкость крови и мешают ее нормальной циркуляции в небольших кровеносных сосудах. Вызванная этим гипоксия приводит к образованию еще большего числа серповидных клеток. Возникает порочный круг, для которого характерны стазы (замедление кровотока) и эпизодические кризы с болями в животе и скелетных мышцах.

Через несколько лет пониженное кровоснабжение часто приводит к некрозу органов, например селезенки, что в свою очередь ведет к их атрофии. У гетерозиготных носителей, которые имеют один нормаль-

84 4. Действие генов

Рис. 4.47 Сканирующая электронная микрофотография оксигенированного (А) и дезоксигенированного (В и С) эритроцитов больного, гомозиготного по гену серповидноклеточной анемии. Обратите внимание на нормальную двояковогнутую форму эритроцита, полностью лишенного гемоглобина А, и ее изменение в условиях гипоксии. Клетки в условиях гипоксии напоминают по форме серп, поэтому их назвали серповидными [31].

ный ген β-глобина НbβА и один мутантный (HbβS), гемоглобин S составляет только 25-40% всего гемоглобина. Клинически такие люди вполне нормальны. Их эритроциты содержат как гемоглобин А, так и гемоглобин S, и по продолжительности жизни не отличаются от нормальных эритроцитов. Серповидноклеточность у таких индивидов сказывается только в условиях сильной гипоксии, например, при нахождении на высоте свыше 3000 м над уровнем моря [1292].

Серповидноклеточность может проявляться слабее, если в организме помимо гемоглобина S имеется другая редкая форма гемоглобина. Присутствие гемоглобина F в эритроцитах больных с серповидноклеточной анемией снижает степень агрегации и кристаллизации гемоглобина S, в результате пациенты, у которых гемоглобин F находится в высокой концентрации, имеют слабовыраженные симптомы серповидноклеточной анемии или не имеют их вовсе. В некоторых случаях присутствие гемоглобина F обусловлено геном, вызывающим постоянный синтез фетального гемоглобина в течение всей жизни (см. ниже). В целом, существует обратная корреляция между количеством гемоглобина F и остротой симптомов серповидноклеточной анемии. Таким образом, любое увеличение количества фетального гемоглобина приводит к ослаблению клинических симптомов серповидноклеточной анемии [970]. Клиническое проявление талассемий будет обсуждаться ниже.

4.3.3. Другие типы мутаций, изменяющих гемоглобин [1188; 1349]

Делецш. Установлено, что гены, детерминирующие синтез глобиновых цепей, могут делетироваться. Делеции генов Нbα приводят к а-талассемии, делеция генов Нbδ и Нbβ вызывает наследственное персистирование фетального гемоглобина или Нbδβ-талассемию (см. ниже).

Делеция, затрагивающая один триплет нуклеотидов, или один кодон, приводит к выпадению в цепи соответствующей аминокислоты. Делеция четырех кодонов (т.е. 12 нуклеотидов) обусловливает выпадение четырех аминокислот. Были обнаружены делеции протяженностью до 15 нуклеотидов, приводящие к утрате 5 аминокислот (табл. 4.16). По всей вероятности, более крупные делеции приводили бы к потере функциональной активности молекулы гемоглобина. Большинство делеционных гемоглобинов либо нестабильны, либо приводят к увеличению сродства к О2, а во многих случаях имеют оба этих свойства (табл. 4.16).

Если число нуклеотидов, утраченных при делеции, не кратно трем, то на участке гена, расположенном за делецией, смысл считываемой генетической информации полностью меняется - в результате возникает совершенно новая аминокислотная последовательность (мутации сдвига рамки считывания). В некоторых случаях образующиеся при этом глобиновые полипептиды удается идентифицировать. Оказалось, что мутация «гемоглобин Wayne» (рис. 4.48) обусловлена делецией одного нуклеотида в 139-м кодоне вблизи конца гена α-глобина, состоящего из 141 триплета. Нуклеотиды терминирующего 142-го кодо-

4. Действие генов 85

Таблица 4.16. Варианты гемоглобина, возникающие в результате делеций

Гемоглобин

Сайт делеций

Делегированные аминокислотные остатки

Свойства

на считываются в другой фазе, и новая рамка считывания продолжается до первого в этой рамке терминирующего кодона (UAG). Таким образом, формируется слегка удлиненная цепь молекулы гемоглобина, содержащая 5 дополнительных аминокислотных остатков, которые кодируются 3'фланкирующей областью гена (рис. 4.38 и 4.48). Поскольку рамка считывания сдвинута, эта аминокислотная последовательность отличается от дополнительной аминокислотной последовательности, возника-

Рис. 4.48. 3'-конец гена Нbα. При мутации Constant Spring 142-й стоп-кодон UAA заменяется на САА, это приводит к трансляции фланкирующих нуклеотидов, которые обычно не экспрессируются. Приведено 6 кодонов из дополнительной последовательности, содержащей 30 кодонов. Мутация Hb Wayne обусловлена делецией третьего нуклеотида в 139-м кодоне, поэтому U, занимающий первое положение в 140-м кодоне, используется как третий нуклеотид 139-го кодона и возникает новый кодон AAU, кодирующий аспарагин. В результате сдвига рамки считывания образуется ген Hb Wayne. Аминокислотную последовательность этого гемоглобина можно предсказать, если считывать последовательность Hb Constant Spring со сдвигом, как это отмечено скобками над и под последовательностью нуклеотидов Hb Constant Spring. Молекула Hb Wayne всего на пять аминокислот длиннее нормальной, поскольку через пять кодонов имеется стоп-кодон UAG.

86 4 Действие генов

ющей при мутации в стоп-кодоне гена Нbα, например при мутации «гемоглобин Constant Spring» (рис 4 48) В этом случае трансляция происходит без сдвига рамки считывания

Совершенно естественно, что делеция, которая приводит к фенотипу «гемоглобин Wayne», локализуется вблизи конца α-цепи Действительно, любая делеция, вызывающая сдвиг рамки считывания на протяженном участке структурного гена, по всей вероятности, будет приводить к синтезу функционально неактивных полипептидов Фенотипически это проявится как «талассемия», и продукт гена вообще не будет обнаруживаться (как при β°-талассемии)

По-видимому, возникновение делеций является следствием ошибочного спаривания между гомологичными последовательностями во время мейотического или митотического деления развивающихся генеративных клеток При рассмотрении нуклеотидных последовательностей, окружающих области делеций у различных делеционных мутантов, обнаруживаются участки гомологии, которые могут быть причиной неправильного спаривания Если оно произошло, последующие рекомбинационные события приведут к возникновению делеций различной протяженности

Результатом неправильного спаривания может быть и образование комбинированных (или составных) генов Белковые продукты таких генов состоят из N-концевой части одного глобина и С-концевой части другого В качестве примера можно привести гемоглобин Lepore Его синтез контролируется комбинированным геном Нbδ-β

Рис. 4.49 Составные гены δβ и βδ В верхней части рисунка указаны 10 аминокислот, по которым гемоглобины δ и β различаются, в остальном эти молекулы идентичны Обнаружено три различных типа гемоглобина Lepore. В случае Lepore (Голландия) кроссинговер произошел на участке между 22-м и 50-м аминокислотными остатками. Локализовать точку рекомбинации точнее не удается, так как между этими аминокислотами последовательности гемоглобинов δ и β идентичны. В случае гемоглобина Lepore (Балтимор) кроссинговер происходит между 50-й и 86-й аминокислотами, а в случае гемоглобина Lepore (Вашингтон - Бостон) между 87-й и 117-й Подобным образом локализованы участки кроссинговера для ряда гемоглобинов β-δ и анти-Leроге [1082]

4 Действие генов 87

Рис. 4.50. 3'-конец гена β-глобина. Нормальная цепь β-глобина содержит 146 аминокислот. Гемоглобин McKees Rock состоит из 144 аминокислот, так как в результате мутации 145-й тирозиновый кодон UAU превращается в стопкодон UAA. В случае гемоглобина Так дуплицированы два последних нуклеотида 146-го кодона (АС), а в случае гемоглобина Cranston - два последних нуклеотида 144-го кодона (AG). Соответствующие нуклеотиды подчеркнуты одной и двумя линиями. Возникающие в обоих случаях сдвиги рамки считывания приводят к тому, что продукты этих генов идентичны, начиная со 147-го остатка вплоть до стоп-кодона (158-й). Скобки указывают триплетные кодоны, соответствующие нормальной последовательности, которая изображена в верхней части рисунка. Аминокислотные последовательности гемоглобинов Так и Cranston были определены в прямых экспериментах, они в точности соответствуют нуклеотидной последовательности нормального гена β-глобина.

(рис. 4.49). Известно несколько таких генов, возникающих при кроссинговере в разных точках. Они различаются по относительной длине последовательностей δ- и β-генов, входящих в их состав (рис. 4.49). Гемоглобин Kenya возникает в результате ошибочного спаривания генов НВАγ и Нbβ и последующего кроссинговера. Его хромосома содержит только ген HbGγ и комбинированный ген НbАγ-β (рис. 4.51).

Дупликации. Дупликации могут охватывать целые гены. Именно так произошло в ходе эволюции различных цепей глобина. На более поздних этапах при внутрихромосомных дупликациях появились два гена а-глобина и два гена у-глобина (Аγ и Gγ). Известны внутригенные дупликации. Например, при мутации «гемоглобин Grady» в а-цепи глобина дуплицированы остатки 116-118 [1136].

Дупликации одного или двух нуклеотидов могут приводить к мутациям со сдвигом рамки считывания. Подобные мутации обнаружены вблизи конца гена β-цепи [31]. Возникновение гемоглобина Так является следствием дупликации нуклеотидов AG после 146-го кодона, а гемоглобина Cranston - дупликации AG сразу после 144-го кодона в β-цепи (рис. 4.50). В положениях 145 и 146 этого гемоглобина находятся аминокислоты, которые не встречаются в соответствующем участке у других вариантов β-глобина. Гемоглобин Tak имеет нормальную аминокислотную последовательность до 146-й аминокислоты включительно. Нормальная β-цепь содержит 146 аминокислот. Сдвиг рамки считывания при дупликации двух нуклеотидов в случае гемоглобинов Tak и Cranston приводит к возникновению идентичных рамок вслед за 146-м кодоном. Оба мутантных гемоглобина имеют на С-конце добавочные аминокислотные последовательности, которые кодируются нуклеотидами, расположенными непосредственно за нормальным стоп-кодоном. Терминация трансляции в этом случае происходит с участием нового нонсенс-кодона (UAA) в положении 158 (рис. 4.50).

Если дупликация одного или двух нуклеотидов происходит внутри гена, а не у

88 4. Действие генов

Рис. 4.51. Образование составных генов гемоглобинов. Ошибочное спаривание между генами НЬδ и Нbβ с последующей рекомбинацией внутри структурного гена приводит к возникновению составного гена δβ (Hb Lepore), при этом возникает и делеция нормальных генов Нbβ и Нbδ. Второй продукт такого негомологичного кроссинговера содержит составной ген βδ, перед которым имеется нормальный ген Нbδ и за которым - ген Нbβ. Такие гены Нb анти-Lepore действительно были обнаружены (Hb Miyada, Hb P, Hb Congo, см. рис. 4.49). Ошибочное спаривание между Нbβ и НbАγ с последующей рекомбинацией приводит к возникновению гибридного гена Аγ-β, известного как Hb Kenya. На схеме показано, каким образом в случае Нb Kenya нормальные гены Нb γ, δ и β утрачиваются, а ген HbGγ сохраняется. Предполагаемый Нb анти-Kenya в настоящее время не обнаружен.

его конца, рамка считывания нарушается на большом протяжении. Маловероятно, что при этом будет синтезироваться функциональная молекула глобина. Дупликации, как и комбинированные гены, должны возникать в результате неравного кроссинговера (рис. 4.49 и 4.51). Действительно, вариант гемоглобина анти-Lepore встречался несколько раз и был описан под названием гемоглобин Hb Miyada, P-Congo или P-Nilotic (рис. 4.49). Предполагаемый вариант анти-Kenya (gγ, Аγ, δ, β-Аγ, δ, β) (рис. 4.51) не был до сих пор обнаружен. Дупликации, так же как и делеции, возникают, по-видимому, вследствие ошибочного спаривания и последующего негомологичного кроссинговера (рис. 4.51).

4.3.4. Талассемии [31; 972; 138; 1253; 222; 97а]

Генетически детерминированное снижение или полное подавление синтеза той или иной цепи гемоглобина обусловливает ряд разнообразных патологических состояний, известных под общим названием «талассемии». Это слово происходит от греческого «Таласса» - Средиземное море, первоначально оно отражало средиземноморское происхождение большинства индивидов - носителей генов, ответственных за талассемию. Хотя с точки зрения географии или этнографии этот термин нельзя считать правильным, он используется достаточно широко. Все случаи талассемии можно под-

Таблица4.17. Мутации, приводящие к β-талассемии [972; 1253]

Локализация

Изменение в последовательности

Тип талассемии

Этническая группа

1. Мутации, нарушающие транскрипцию

а) удаленные регуляторные элементы

–87

C–G

β+

Жители Средиземноморья

–88

С–Т

β+

Негры США

б) ТАТА-последовательность

–28

А–С

β+

Курды

–28

A–G

β+

Китайцы

–29

A–G

β+

Негры США

2. Нарушения расщепления РНК на 1000 т. п. н. дальше экзона 3

Т–С

β+

Негры США

3. Неактивная РНК

а) нарушения терминации

кодон 17

А–Т

β°

Китайцы

кодон 39

С–T

β°

Жители Средиземноморья

кодон 15

G–A

β°

Индийцы

б) мутации сдвига рамки

кодон 8

–2

β °

Турки

кодон 16

–1

β °

Индийцы

кодон 44

–1

β °

Курды

кодон 8/9

+1

β °

Индийцы

кодон 41/42

–4

β °

Индийцы

кодон 6

–1

β °

Жители Средиземноморья

кодон 71/72

+ 1

β °

Китайцы

4. Мутации, затрагивающие процессинг РНК

а) границы сплайсинга

донорные участки

IVS-1, поз. 1

G–A

β °

Жители Средиземноморья

IVS-1, поз. 1

G–T

β °

Индийцы

IVS-2, поз. 1

G–A

β °

Жители Средиземноморья

IVS-1, поз. 5

G–C

β +

Индийцы

IVS-1, поз. 6

Т–С

β +

Жители Средиземноморья

акцепторные участки

1VS-1

деления 25 п. н.

β °

Индийцы

IVS-1

A–G

β °

Негры США

б) образование новых сайтов сплайсинга

новый донорный сайт

IVS-1,

С–T

β°

Китайцы

IVS-2, поз. 705

T–G

β+

Жители Средиземноморья

IVS-1, поз. 745

C–G

β+

»

1VS-1, поз. 116

T–G

β+

»

новый акцепторный сайт

IVS-1, поз. 110

G–A

β+

»

в) усиление криптических сайтов

кодон 24

Т–A

β+

Негры США

кодон 26

G–A

βЕ

Жители Азии

кодон 27

G–T

βKnossos

Жители Средиземноморья

90 4. Действие генов

разделить на α- и β-талассемии. Талассемии различаются по этиологии, поскольку показано, что ослабление синтеза цепей гемоглобина может быть обусловлено несколькими генетическими механизмами [1037].

Успехи в исследовании талассемий на молекулярном уровне привели к тому, что мутационные повреждения, характерные для этой группы заболеваний, изучены в настоящее время гораздо полнее любых других мутаций у млекопитающих. Изучение различных генов, ответственных за талассемию, позволило многое узнать о структуре, функции и организации глобиновых генов в норме. Выяснилось, что мутации, затрагивающие различные этапы синтеза гемоглобина, могут ослаблять синтез гемоглобина (β+-талассемий) или даже полностью его предотвращать (β0-талассемии) [972; 1253; 1238; 4341] (табл. 4.17, 4.18).

Транскрипционные или промоторные мутации. Мутации, которые вызывают талассемию и затрагивают 5'-некодирующую область гена Нbβ, можно рассматривать как регуляторые мутации, влияющие на транскрипцию. Такие мутации обнаружены в константном регуляторном элементе с последовательностью PuCPuCCC и внутри ТАТА-последовательности (табл. 4.17). Эти мутации ослабляют синтез гемоглобина и проявляются как относительно легкие формы талассемий. Мутации, затрагивающие СААТ-сайт, в настоящее время не обнаружены.

Мутации в сайте полиаденилирования РНК. У негров часто обнаруживается одиночная мутационная замена ААТААА  ААСААА в 3-фланкирующей области гена Нbβ, приводящая к β+-талассемий; таким образом, мутации в 3-некодирующей области также могут влиять на эффективность транскрипции. Относительно слабое проявление β-талассемий в этой расовой группе объясняется явным преобладанием мутаций, затрагивающих ТАТА-последовательность (см. выше) и сайт полиаденилирования (табл. 4.17).

Нонсенс-мутации и мутации со сдвигом рамки считывания. Как уже указывалось ранее, мутации, приводящие к возникновению терминирующего кодона внутри экзона гена гемоглобина, обусловливают синтез укороченной, неактивной цепи и вызывают поэтому β0-талассемию. Выявлены три такие мутации, одна из них характерна для уроженцев Средиземноморья (β39С—Т). Обнаружена рестриктаза (Mael), узнающая

Рис. 4.52. Транскрипция и трансляция генов гемоглобина. Номера указывают сайты, которые изменяются при мутациях, вызывающих талассемию.

4. Действие генов 91

этот сайт, благодаря чему стала возможной пренатальная диагностика β39-талассемии [1328а].

Делеции и инсерции, длина которых не кратна трем нуклеотидам, нарушают нормальное считывание генетической информации, в результате чего синтезируются нефункциональные цепи глобина. В различных популяциях обнаружено семь подобных мутаций, вызывающих β°-талассемию (табл. 4.17).

Мутации, нарушающие процессинг РНК. Процессинг РНК заключается в вырезании интронов и сплайсинге (сращивании) экзонов с образованием функциональной мРНК (рис. 4.40, 4.52). Описано много различных мутаций, нарушающих этот процесс. Например, известна целая группа мутаций, изменяющих динуклеотид GT (или AG) в донорном (или акцепторном) участке сплайсинга. Эти динуклеотиды входят в состав так называемых канонических (обобщенных) последовательностей, которые включают еще несколько нуклеотидов и играют центральную роль в нормальном сплайсинге. В результате одиночных замен в этих сайтах сплайсинг нарушается, что приводит к β°- или β+-талассемии. В некоторых случаях мутации активируют так называемые криптические сайты с динуклеотидами GT и AG. В норме, вероятно, эти сайты в сплайсинге не участвуют. В результате образование нормальной мРНК нарушается. Мутации в интронах могут генерировать новые сайты сплайсинга в интронах, которые конкурируют с нормальными сайтами, замедляя процессинг, и в конечном счете приводят к талассемии. Мутации другого класса усиливают уже существующие криптические сайты. Часто встречающаяся мутация такого типа НbЕ активирует такой сайт. Это приводит к ослаблению синтеза гемоглобина HbβE и, следовательно, к талассемии. Различные мутации, нарушающие сплайсинг, перечислены в табл. 4.17. Все точковые мутации в гене β-глобина, которые вызывают β-талассемию, показаны на рис. 4.53.

Делеции в β-глобиновом кластере генов и наследственная персистенция фетального гемоглобина. В отличие от а-талассемии Р-талассемия обычно обусловлена не делениями генов. Однако из этого правила есть много исключений. Более трети случаев Р-талассемии у индийцев оказывается связанной с делецией длиной 619 п. н., которая начинается во втором интроне и заканчивается за 3'-концом некодирующей области гена Нbβ (рис. 4.54, табл. 4.18). Различные редкие делеции в этом гене описаны у негров США, известен один случай среди датчан. Обнаружено также несколько других, более крупных делеции в γ-δ-β-локусе. Их локализация и протяженность показаны на рис. 4.54. Методами цитогенетики эти делеции обнаружить не удается: они слишком малы для микроскопического изучения.

Мутации «гемоглобин Lepore» и «гемоглобин Kenya» представляют собой делеции, при которых сохраняются части функциональных генов и возникают их слияния: δ-β (гемоглобин Lepore) и γ-β (гемоглобин Kenya). Известно несколько делеции, при которых происходит утрата всего или почти всего кластера, при этом γ-, δ- и β-цепи не синтезируются. Принято различать делеции, приводящие к талассемическому фенотипу анемии, например δ-β-талассемия, и делеции, при которых отсутствие δ- и β-локусов компенсируется синтезом фетального гемоглобина (наследственная персистенция фетального гемоглобина, НПФГ). Это отличие не является абсолютным, поскольку при НПФГ компенсация благодаря синтезу γ-цепи не бывает полной. Остается

Рис. 4.53. Расположение мутаций, вызывающих р-талассемию в гене Нbβ. Различные мутации перечислены в таблице 4.17.

92 4. Действие генов

Рис. 4.54. Делеции в кластере генов γδβ. Большинство этих делеций встречается редко. НПФГ (англ. HPFH) - наследственная персистенция фетального гемоглобина.

неясным, почему некоторые делеции активируют ген фетального гемоглобина. В настоящее время этот вопрос интенсивно изучается.

Наследственная персистенция фетального гемоглобина может быть вызвана мутациями неделеционной природы. В случае греческой разновидности НПФГ обнаружена точковая мутация в 5'-фланкирующей области Аγ гена в положении —117 [1040]. Другая точковая мутация в положении 202 5'-фланкирующей области гена HbGγ найдена у негров с неделеционной НПФГ [1093]. Считается, что последовательности, которые изменяются под действием этих мутаций, в норме играют ключевую роль в остановке синтеза у-цепи в постнатальный период.

Изучение генетического контроля синтеза гемоглобина имеет большое значение для лечения талассемии и серповидноклеточной анемии, так как усиленный синтез гемоглобина HbF при этих заболеваниях мог бы обеспечить значительный терапевтический эффект.

Гетероклеточная наследственная персистенция фетального гемоглобина [222]. Группа гетерогенных генетических состояний ха рактеризуется некоторым усилением синте за фетального гемоглобина (2-3%, иногд; более) и явно неравномерным распределе нием в популяции эритроцитов. Этим и

Таблица.4.18. β-талассемии, наиболее часто встречающиеся у различных этнических групп [972]

Этническая группа

Мутация, приводящая к β-талассемии

Тип

Частота, %

Негры США

ТАТА-последовательность (-29)

β+

39

Сайт полиаденилирования

β+

26

Жители

Интрон 1 (поз 110)

β+

35

Средиземноморья

β39-терминатор

β+

27

Индийцы

Интрон 1 (поз. 5)

β+

36

Делеция (619 п. н.)

β°

36

Китайцы

Сдвиг рамки (поз. 71/72)

β°

49

Интрон 2 (поз. 654)

β°

38

4. Действие генов 93

объясняется название состояния - гетероклеточная НПФГ. Оно не сопровождается анемией. Если ген, определяющий гетероклеточную НПФГ, сочетается в генотипе с геном HbS или с геном β-талассемии, уровень фетального гемоглобина может превышать обычные 2-3%. В частности, при серповидноклеточной анемии повышенный уровень гемоглобина HbF приводит к смягчению клинической картины заболевания. Гетероклеточная НПФГ наследуется как доминантный аутосомный признак и, судя по рестрикционному картированию, не связана с заметными делециями в β-глобиновом кластере. Молекулярные основы гетероклеточной НПФГ неизвестны, но некоторые данные свидетельствуют о том, что геи, ответственный за повышенный уровень гемоглобина F, не сцеплен с γ-δ-β-кластером [1012].

Значение в клинике. β-Талассемии широко распространены в тропических и субтропических областях, поскольку больные, как оказалось, имеют некоторое селективное преимущество перед здоровыми в отношении тропической малярии [1227] (разд. 6.2.1.6). У гетерозигот по β-талассемии наблюдается небольшая анемия (табл. 4.19), несколько повышено количество гемоглобина А22δ2). Их эритроциты мельче и содержат меньше гемоглобина (показатели МСН и MCV снижены) [31; 222]. Гетерозиготы обычно не нуждаются в медицинском наблюдении или лечении. Внешний вид эритроцитов показан на рис. 4.55.

Гомозиготные больные с β-талассемией страдают сильной анемией и нуждаются в переливаниях крови. У гомозигот по β°-талассемии гемоглобин А полностью отсутствует, при β+-талассемии его уровень сильно снижен. Большая часть гемоглобина - это гемоглобин фетального типа. Заболевание характеризуется задержкой роста и приводит к летальному исходу в детстве или юности. Гомозиготы и гетерозиготы-компаунды по β+/β°-талассемии страдают тяжелой гемоглобинопатией. Показано, что одновременное поражение а-талассемией смягчает клиническую картину у гомозигот по р-талассемии.

Сочетание гемоглобина S с β+-талассемией характерно для негритянских популяций и по симптоматике напоминает серповидноклеточную анемию. Сочетание гемоглобина Е с р-талассемией часто встречается в Юго-Восточной Азии и, подобно β°-талассемии, вызывает тяжелую анемию. Это связано с тем, что мутация гемоглобина Е сама по себе приводит к легкой талассемии (см. выше).

К настоящему времени идентифицировано более 30 различных точковых мутаций, обусловливающих β-талассемию (рис. 4.53, табл. 4.17). Из них 33%-нонсенс-мутации и мутации со сдвигом рамки считывания - препятствуют трансляции мРНК, 47% нарушают сплайсинг, 16%-транскрипцию и 1 % - механизм полиаденилирования. По-видимому, известна лишь небольшая часть мутаций, вызывающих талассемию.

Удивительная гетерогенность мутаций в β-глобиновом локусе проявляется и в высокой частоте гетерозигот-компаундов по р-талассемии. Такие пациенты несут сразу две мутации, обусловливающие р-талассемию, и наследуют их от обоих родителей. В изолированных популяциях гетерозиготыкомпаунды встречаются несколько реже, поскольку большинство случаев заболевания в таких изолятах бывает связано с единичными, распространившимися мутациями. Например, нонсенс-мутация β39 составляет приблизительно 27% всех мутаций, вызывающих р-талассемию в среднем по Средиземноморью (табл. 4.18), и в то же время составляет абсолютное большинство на острове Сардиния. Поскольку нарушения у гомозигот могут быть самыми разными (от едва заметных до полного отсутствия синтеза глобина) и гетерозиготыкомпаунды встречаются часто, тяжесть заболевания сильно варьирует. В табл. 4.19 приведены сведения о наиболее важных с клинической точки зрения гемоглобинопатиях.

α-Талассемии делеционной природы [1122, 1156а, 2322]. Большинство случаев α-талассемии связано с делециями генов. В ходе эволюции происходили конверсия генов (разд. 2.3.4) и множественные акты рекомбинации («согласованная эволюция»), что привело к высокой степени гомологии в

94 4. Действие генов

Таблица 4.19. Гемоглобинопатии, имеющие клиническое значение

структурных и фланкирующих областях нормальных генов α-глобинов. Гомология последовательностей в этих областях заставляет хромосомы неправильно спариваться, и при рекомбинации неидентичных спаренных хромосом возникают дупликации и делеции (рис. 4.56). Обнаружены хромосомы, содержащие только один ген (α) или три гена (ααα). Селекция на устойчивость к малярии привела к увеличению в тропических и субтропических популяциях частоты гена Нbα( — α). Это один из наиболее часто встречающихся типов талассемии. Хромосомы с утроенным локусом (ααα), по-видимому, практически не вызывают отрицательных эффектов у их носите-

4 Действие генов 95

Рис. 4.55. Мазки крови из периферических сосудов нормального человека (А) и больных гетерозиготного по β-талассемии (Б), гетерозиготного по α-thal-1 (В) и больного тяжелой формой β-талассемии (Г)

лей и встречаются в этих популяциях гораздо реже

Два типа делеций обусловливают умеренную форму α-талассемии (α-thal или — α /αα) Механизмы делеций проиллюстрированы на рис 4 56 При так называемом левостороннем кроссинговере возникает хромосома с одиночным геном Нbα вследствие ошибочного спаривания последовательностей, расположенных на 5'-конце aj-псевдогена, и гомологичной ей последовательности в локусе Hba2 При рекомбинации происходит утрата участка ДНК длиной 4,7 т п н Поскольку область, в которой происходит рекомбинация в данном случае, расположена перед участком правосторонних делеций (см ниже), используется термин «левосторонний» Так называемый «правосторонний» кроссинговер, являющийся результатом неправильного спаривания между генами Hba2 и Hbαl, приводит к образованию комбинированного гена α21 и делеций в 3,7 т п н Этот «правый» α-ген (точнее, ген α11) – наиболее частая причина α-талассемии в Африке и в Средиземноморье, тогда как в Азии обнаруживаются продукты и левостороннего, и правостороннего кроссинговера Делеция одного гена α в обоих типах мутаций вызывает стертую форму талассемии и очень широко распространена во всем мире, причем частота гетерозигот достигает 33% в некоторых областях Африки и Средиземноморья

Делеций, обусловливающие утрату обоих α-локусов (– –), показаны на рис 4 57

Возникающая в этом случае талассемия часто обозначается как α-thal-1 Такие мутации распространены в Юго-Восточной Азии, редки в Средиземноморье и никогда не обнаруживаются у африканцев

Рис. 4.56. Кроссинговер в X и Z участках гомологии в области гена НЬа При «левостороннем» кроссинговере происходит ошибочное спаривание X участков гомологии с последующей рекомбинацией, при которой возникает один ген Нbα (с делецией длиной 4 2 т п н) При «правостороннем» кроссинговере происходит ошибочное спаривание Z гомологичных участков, кроссинговер внутри а-генов приводит к образованию составного гена α2α1 и делеции длиной 3,7 т.п.н В результате обоих событий возникают хромо сомы с тремя α-глобиновыми генами [1156а]

96 4. Действие генов

Рис. 4.57. Делеции в гене Hbα. Большая часть делеций встречается часто (см. текст). ■; ▥ протяженность делеций неизвестна.

Все делеции можно выявить как до, так и после рождения с помощью рестрикционного картирования. Описаны различные фенотипы, наблюдающиеся при делециях одного, двух, трех и четырех генов а (табл. 4.20, А, рис. 4.57). Отсутствие одного гена НЬа (— α/αα) не приводит к заметным гематологическим нарушениям, поскольку три остальных гена остаются активными. Для обнаружения талассемии при делеции одного из генов Нbα необходим рестрикционный анализ или количественный анализ биосинтеза α-цепи глобина. Делеция всех

четырех α генов (– –/– –) приводит к летальному исходу до или во время родов и известна под названием водянки плода, поскольку наблюдается сильный отек у мертворожденных детей. Большая часть молекул гемоглобина у таких детей состоит из четырех α-цепей (гемоглобин α4 или гемоглобин Bart). Считается, что плод способен доживать до поздних сроков беременности благодаря присутствию функционального гемоглобина Portland (ζ2у2). У африканцев водянка плода практически не встречается, это связано с отсутствием в популяции хромосом, несущих делецию обоих генов α-глобина.

Делеция двух генов α(– –/α+ или – –/сих) приводит к слабовыраженной анемии, тогда как делеция трех генов (—α/ — ) – к сильной анемии, для которой характерно образование гемоглобина НbН – тетрамера β4 (табл. 4.20, А). Гемоглобин НbН образуется вследствие недостатка α-глобина на фоне нормального синтеза β-глобина.

Неделеционная α-талассемия [972, 1156]. Логично предположить, что среди мутаций неделеционной природы имеются такие, которые обусловливают α-талассемию. Действительно, обнаружен широкий спектр таких мутаций (табл. 4.20, Б).

Таблица 4.20, А. α-Талассемии, обусловленные делециями

Число генов Нbα

Общее число активных генов Нbα

Общее число делегиро­ванных генов Нbα

материнских

Отцовских

активных

делетиро-ванных

активных

делегиро­ванных

Норма

2

2

4

Слабовыраженная α-талас-семия

1

1

2

3

1

(α-thal-2)

2

1

1

Тяжелая α-талассемия

а) –

2

2

(α-thal-1)

б) 2

2

2

2

в) 1

1

1

1

Болезнь

НbН

2

1

1

1

3

(НbН = Р4)

1

1

2

Водянка плода при Нbγ4

2

2

4

Следует отметить, что делеции могут быть унаследованы как от матери, так и от отца или (кроме мягкой формы а-талассемии) от обоих родителей. Кроме того, при различных комбинациях может возникать один и тот же фенотип тяжелой α-талассемии: а) мать: тяжелая α-thal, отец: норма; б) мать: норма; отец: тяжелая α-thal; б) отец: слабая α-thal, мать: слабая α-thal.

4. Действие генов 97

Таблица 4.20, Б. Мутации неделеционной природы, вызывающие α-талассемию [972; 1156]

Приведенный в таблице перечень не содержит регуляторных мутаций, локализующихся перед геном Нbα, однако найдена мутация, нарушающая стартовый кодон AUG. Фенотипически это изменение проявляется как α-талассемия – не образуется функциональной мРНК, поскольку AUGкодон, с которого начинается трансляция, находится в 32-м положении. Это приводит к синтезу явно дефектного α-глобина, лишенного первых 32 аминокислот. Известна также мутация в 3'-фланкирующей области, вызывающая снижение синтеза функциональной мРНК.

В настоящее время обнаружена лишь одна мутация, затрагивающая процесс

Рис. 4.58. Синтез цепей глобина при α-талассемиях. Синтез молекул глобина представлен в виде отношения Hbα/Hbβ, которое в норме близко к 1, другими словами, α- и β-глобин синтезируются в эквивалентных количествах. Носители, у которых признаки заболевания не выражены, являются гетерозиготами по α-thal-2 (стертая форма α-талассемии), это удается выявить только специальными биохимическими тестами [1159].

98 4 Действие генов

сплайсинга. Это короткая делеция длиной 5 п.н., удаляющая акцепторный сайт сплайсинга в первом интроне.

Известны четыре различные мутации, изменяющие терминирующий кодон UAA на смысловой. В результате этого образуется цепь α-глобина, удлиненная на 31 аминокислоту по сравнению с нормальной. мРНК, кодирующие такой удлиненный гемоглобин, нестабильны. В крови обнаруживается лишь до 5% мутантного белка. Наиболее часто из этих мутаций встречается гемоглобин Constant Spring (рис. 4.58).

В случае гемоглобина Quong-Sze мутация нарушает способность к образованию димера α1β1 и приводит к сильной нестабильности молекулы. Вероятно, будут обнаружены и другие варианты с подобными свойствами.

Прямых данных о частоте неделеционной α-талассемии нет, однако была изучена природа генов, аллельных генам а-талассемии, у больных с гемоглобином НbН (β4), у которых в одной из хромосом делетированы по меньшей мере два гена Нbα (—/αα). В популяциях Саудовской Аравии и Китая при гемоглобинопатии НbН до 50% таких аллельных генов а-талассемии не содержали делеций.

4.3.5. Популяциоииая генетика генов гемоглобина (см. [972], разд. 6.1.2.3)

Обнаруженный в локусе Hbβ полиморфизм позволяет проследить возникновение и распространение различных гемоглобинопатии. Можно предположить, что мутация «гемоглобин S» возникла независимо в трех различных географических зонах (Сенегал, Бенин, Банту) и затем широко распространилась благодаря селективному преимуществу, которое она дает против заболевания малярией [1833]. Среди хромосом с мутацией НbЕ в Юго-Восточной Азии различают три гаплотипа, один из которых возникает в результате кроссинговера в «горячей точке» (см. выше). Мутация «гемоглобин С» сцеплена, как правило, с одним гаплотипом (см., однако, разд. 6.2.1.6). Отдельные мутации, приводящие к β-талассемии, обычно возникают в уникальных гаплотипах и затем распространяются благодаря селекции на устойчивость к малярии. Из 31 точковой мутации, приводящей к β-талассемии, лишь 2 встречаются более чем у одной этнической группы. Связь конкретной мутации со специфическим гаплотипом в значительной степени облегчила установление природы различных мутаций, вызывающих талассемию. Поскольку для исследования были выбраны различные гаплотипы ДНК, существовала вероятность обнаружения новых, ранее неизвестных мутаций. И действительно, удалось открыть много новых типов талассемии [1253]. Можно заключить, что все распространенные талассемии и гемоглобинопатии возникли уже после дивергенции человеческих рас и в большинстве случаев остаются сцепленными с хромосомами, в которых они впервые появились. Если одна и та же мутация сцеплена с разными гаплотипами, это в большинстве случаев проще всего объяснить мейотическим кроссинговером в «горячей точке» рекомбинации, расположенной перед геном β-глобина.

Большой интерес вызывает возможность межаллельной конверсии. Так, мутация Нbβ39 на острове Сардиния сцеплена с несколькими гаплотипами, что трудно объяснить простой рекомбинацией. Более вероятным механизмом считается однонаправленный перенос генетической информации, или конверсия (рис. 2.97). Этот же механизм предполагают для объяснения подобных данных по мутациям гемоглобин S, гемоглобин Е и мутации сдвига рамки в гене β-глобина. Такой механизм представляется очень привлекательным, поскольку имеются убедительные доказательства генной конверсии в эволюции генов глобинов у нечеловекообразных обезьян. Высказываются предположения о молекулярных механизмах такой конверсии [972]. Для шести хорошо изученных мутаций в интронах, которые приводят к талассемии, признаков генной конверсии не обнаружено.

4.3.6. Пренатальная диагностика гемоглобинопатии [966; 2269; 2322; 2361]

Существует несколько возможных подходов к пренатальной диагностике гемо-

4. Действие генов 99

Рис. 4.59, Олигонуклеотидный зонд (олигонуклеотид из 19 остатков) для гена нормального β-глобина отличается от зонда для гена с мутацией, приводящей к β -талассемии только заменой G  А в интроне IVS-2. В соответствующих условиях гибридизации зонд для мутантного гена будет узнавать только мутантный ген, но не нормальный. Аналогичным образом «нормальный зонд» не будет гибридизоваться с мутантным геном.

Рис. 4.60. Обнаружение глобинового гена. ДНК выделяют из любого препарата клеточных ядер, в ее составе имеются глобиновые гены. Различные рестрикционные эндонуклеазы (рестриктазы) расщепляют ДНК на множество фрагментов (рестриктов), узнавая специфические последовательности нуклеотидов. Фрагменты разделяют по размеру с помощью гель-электрофореза. Готовят специфический радиоактивный зонд на глобиновый ген и гибридизуют его с фрагментами ДНК Радиоактивный сигнал обнаруживают с помощью радиоавтографии [1252].

глобинопатий: а) биохимический анализ гемоглобина на уровне белка в образцах крови, получаемых при фетоскопии или пункции плаценты; б) амниоцентез (пункция амниотической жидкости) на 15-16-й неделе с последующим анализом ДНК амниотических клеток; в) анализ ДНК ворсинок хориона, полученных при биопсии хориона на 9-10-й неделе беременности (разд. 9.1.1). В прямой диагностике клеток и тканей плода используются рестрикционные эндонуклеазы (рестриктазы), позволяющие распознать специфические мутации, например гемоглобин S, а также олигонуклеотидные зонды [1254; 2376], способные гибридизоваться с ДНК при конкретной мутации, вызывающей талассемию (рис. 4.59). В основе косвенных методов пренатальной диагностики лежит семейный анализ рестрикционных сайтов ДНК (выявляемых при анализе полиморфизма длины рестрикционных фрагментов), тесно сцепленных с изучаемой формой талассемии (разд. 9.1.1).

Все эти методы были использованы к настоящему моменту. Взятие образцов крови при фетоскопии или пункции плаценты во многих случаях приводит к гибели плода (5% у опытных специалистов), хотя сам анализ относительно прост: для крови, взятой непосредственно у плода, достаточно методов исследования белков. По мере усовершенствования и упрощения методов молекулярной биологии (рис. 4.60) все большее число лабораторий переключается на их использование. Биопсия хориона имеет некоторые преимущества перед амниоцентезом: при этом удается получить больше ДНК, на более ранних сроках, меньше времени требуется для окончательного заключения. После амниоцентеза для получения биомассы, необходимой для анализа ДНК, клетки приходится культивировать в течение нескольких недель.

Методы прямого анализа ДНК всегда более предпочтительны, поскольку не связаны с изучением семей. Так, в диагностике талассемии большие надежды возлагают на применение специфических олигонуклеотидных зондов и разработку методов гибридизации без использования радиоактивной метки. Однако при этом заранее необходимо предполагать, какой именно му-

100 4. Действие генов

тации, приводящей к талассемии, следует ожидать. В этом могут помочь данные по сцеплению конкретной мутации со специфическим гаплотипом ДНК. Таким образом, для установления природы мутации, вызывающей талассемию, требуется предварительное исследование ДНК больного родственника.

Гемоглобин как модельная система. Гемоглобин - наиболее изученная генетическая система у человека. На основе концепций, разработанных в ходе ее изучения, можно глубже понять другие явления в генетике человека. Например, если в разных семьях обнаруживаются наследственные заболевания с различным фенотипическим проявлением, обычно заключают, что они вызваны мутациями в разных генах. Исследования гемоглобина показывают, что так бывает не всегда. Например, хотя метгемоглобинемия фенотипически сильно отличается от гемолитической анемии или эритроцитоза, причиной их являются аллельные мутации. Таким образом, фенотип определяется тем, какая именно молекулярная аномалия лежит в его основе и каким образом при этом изменена нормальная функция.

Другой полезный урок можно извлечь из того, как тетрамерная структура гемоглобина обеспечивает функцию связывания кислорода, а также как мутации могут влиять на эту функцию, нарушая взаимодействие различных глобиновых цепей. Хотя большинство мутаций, изменяющих гемоглобин, нейтральны, все патологические варианты, за исключением серповидноклеточной анемии, наследуются по доминантному типу. Отсюда следует, что один из возможных механизмов доминирования заключается в нарушении взаимодействия между продуктами аллельных генов (разд. 4.6).

Наконец, изучение гемоглобинов продемонстрировало многообразие механизмов возникновения мутаций у человека. Они могут затрагивать как структурные гены, так и прилегающие регуляторные участки. В большинстве случаев - это замены нуклеотидов, но встречаются и делеции, которые могут сильно различаться по длине. Хотя у прокариот мутации со сдвигом рамки считывания широко распространены, их обнаружение у человека было несколько неожиданным для специалистов. Наше представление о роли мутаций в эволюции во многом основано на результатах изучения мутаций гемоглобина.

4.4. Генетика антител и системы антиген/рецептор

Образование антител и их функции. Живые организмы постоянно подвергаются атаке как извне - со стороны бактерий и вирусов, так и изнутри – со стороны клеток, которыев результате случайных событий приобретают способность неограниченно делиться и формировать опухоли. В ходе эволюции выработалась сложная защитная система, состоящая из ряда клеточных и гуморальных факторов. Эта система называется иммунной, а изучающая ее наука - иммунологией [100]. На рис. 4.61 представлена сильно упрощенная схема иммунологической защиты и ее основные компоненты. Указаны также те компоненты, для которых обнаружены генетические дефекты. Важнейшие структуры иммунной системы - лимфоциты - обладают рецепторами к антигенам. Рецепторы лимфоцитов (и Т-, и В-клеток) закодированы в геноме и сходны по своей структуре, однако гены для этих двух типов рецепторов различны и локализуются в разных хромосомах. Секретируемые рецепторы В-клеток (антитела) представлены иммуноглобулинами. Рецепторы Т-клеток не секретируются.

Специфичность рецептора целиком определяется первичной структурой его антиген-связывающего участка. Этот участок кодируется целым набором генов, причем в ходе развития лимфоцита один из генов вариабельной части молекулы (V-ген), выбранный случайным образом, объединяется с геном константной части (С-геном). Таким образом, дифференцированный лимфоцит способен продуцировать только один тип рецептора, специфичный для одного определенного антигена, а вся популяция лимфоцитов как целое содержит полный набор рецепторов, которые организм способен синтезировать. Контакт с определенным антигеном вызывает пролиферацию тех лимфоцитов (клонов), кото-

4 Действие генов 101

Рис. 4.61. Важнейшие компоненты и события иммунного ответа Генетические дефекты, обозначенные на рисунке черными прямоугольниками, могут нарушать иммунную защиту на различных этапах ТСР-цитотоксический предшественник Т-клеток, Тс цитотоксическая Т-клетка, ТНР предшественник хелпера Т-клеток, ТН — Т-хелпер, Мф макрофаг, Вр-предшественник В-клеток, В-В-клетка, Р - плазматическая клетка, В1 бласт, Ag антиген, Ar - рецептор антигена, Аb — антитело (рецептор антигена В-клетки), МНС- молекулы главного комплекса гистосовместимости, Mr-рецептор молекул главного комплекса гистосовместимости; IL-1-интерлейкин- 1, IL-2 - интерлейкин-2, А - наследственные аномалии лимфоцитов, В лимфопенические иммунные аномалии и гиперплазия тимуса; С различные типы дефектов В-клеток; D- дефекты отдельных Ig; Е-дефекты компонентов системы комплемента, F-агранулоцитоз, G — детский прогрессирующий грануломатоз.

рые имеют рецептор, соответствующий этому антигену. Генетика антител (рецепторов В-лимфоцитов) изучена значительно лучше, чем рецепторов Т-клеток. Впрочем, основные принципы в этих случаях, по-видимому, сходны.

Белки миеломы как инструмент исследования. У большинства людей иммуноглобулины (антитела, или секретируемые В-клетками рецепторы антигенов) представляют собой сложную смесь белков, синтезируемых многими различными клеточными клонами. На первый взгляд такая гетерогенность кажется непреодолимым препятствием на пути химического анализа антител, поскольку для него необходимы очищенные белки. Однако, как и во многих других случаях, сама природа «предусмотрела» ситуации, позволяющие решить эту задачу. Неоплазии возникают при злокачественном перерождении одиночных клеток. Во многих случаях это происходит в результате соматических мутаций (разд. 5.4.6). Если дифференцировка клеток, продуцирующих антитела, произошла до начала злокачественного роста, плазматические опухолевые клетки будут в большом количестве продуцировать один-единственный вид антител. Действительно, такие моноклональные белки были обнаружены у мыши и у человека при миеломатозах-это распространенный тип плазматических опухолей. Белки миелом можно выделить и очистить в достаточных количествах для определения их аминокислотной последовательности. Таким путем была изучена структура антител.

Классификация иммуноглобулинов [1123; 1124]. Принято различать пять классов иммуноглобулинов: IgG, IgM, IgA, IgD и

102 4 Действие генов

Рис. 4.62. Схема структуры молекулы IgG Молекула IgG состоит из двух идентичных легких цепей и двух идентичных тяжелых цепей Каждая цепь состоит из аминоконцевой V-области и карбоксиконцевой С-области С-область легких цепей по длине приблизительно равна V-области; С-область тяжелых цепей IgG втрое длиннее и состоит из трех относительно гомологичных доменов, возникших в результате эволюции из общего гена-предшественника

IgE. Молекулы иммуноглобулинов каждого из этих классов состоят из нескольких полипептидных цепей различной длинытак называемых легких цепей (L) и тяжелых цепей (Н). Класс иммуноглобулина определяется тем, к какому из пяти типов - γ, μ, α, δ или ε - относятся входящие в его состав тяжелые цепи. Легкие цепи бывают лишь двух типов - k или λ. В любой молекуле присутствуют легкие цепи только одного из этих двух типов, но в каждом классе встречаются иммуноглобулины с легкими цепями как k-, так и λ-типа.

Молекула IgG представляет собой типичный иммуноглобулин, в ее составе две Н-цепи связаны дисульфидными мостиками друг с другом, а также с двумя L-цепями. Другие классы иммуноглобулинов отличаются более сложной структурой, например одна молекула IgM построена из пяти субъединиц, в каждой из которых имеется по две Н-цепи. В ходе нормального иммунного ответа первыми образуются антитела класса IgM, затем они заменяются антителами класса IgG той же специфичности. Переключение синтеза происходит в тех же клетках, которые синтезировали IgM (рис. 4.62).

Константная и вариабельная области. Все тяжелые и легкие цепи иммуноглобулинов имеют общее свойство, отличающее их от всех изученных к настоящему времени белков: в них имеются константные и вариабельные области. Константная область (С) построена подобно большинству других полипептидов, ее аминокислотная последовательность одинакова у С-цепей всех типов, исключение составляют лишь отдельные аминокислотные остатки, по которым наблюдаются полиморфные варианты. Обычно они выявляются косвенно, по подавлению агглютинации эритроцитов специфическими антителами. Эти варианты обозначаются как группы Gm и Km (Inv) для тяжелых и легких цепей соответственно. Вариабельные области, напротив, по аминокислотным последовательностям оказались различными во всех изученных к настоящему времени белках миелом. Все вариабельные области легких и тяжелых цепей имеют примерно равную длину107-120 аминокислот. Константная область легких цепей приблизительно равна по длине вариабельной области. В тяжелых цепях константная область по длине почти в точности соответствует нескольким копиям вариабельной области (рис. 4.63). Константные области тяжелых γ1- и α1-цепей в три раза, а μ- и ε-цепей в четыре раза длиннее сходных областей легких цепей. Более того, все сегменты константной области в некоторой степени гомологичны между собой, т.е. их аминокислотные последовательности, хотя и различаются по многим деталям, но все же настолько сходны, что это не может быть случайностью.

Общее происхождение генов всех цепей иммуноглобулинов. Проще всего такое сходство объяснить общим эволюционным происхождением всех этих сегментов. Предположим, что исходно существовал один ген, который кодировал полипептидную цепь, по длине приблизительно соответствующую константной области легкой цепи. В ходе эволюции этот ген многократно дуплицировался. Некоторые дупликации при-

4 Действие генов 103

Рис. 4.63. Легкая цепь (вверху) состоит из вариабельной и одной константной области, которая может быть ϰ- либо λ-типа Тяжелая цепь (в центре и внизу) состоит из вариабельной (V) области и константной области, включающей три или четыре гомологичных участка, происходящих от общего гена-предшественника Например, константные области γ1и α1-цепей, входящие соответственно в IgG и IgA, состоят из трех таких доменов μ- и ε-тяжелые цепи содержат по 4 домена [1124]

вели к возникновению генов, кодирующих полипептиды, в составе которых одна и та же аминокислотная последовательность повторена три или даже четыре раза. Дуплицированные участки ДНК были полностью гомологичны по структуре, но различались по относительному расположению. Дивергенция этих структурно гомологичных между собой участков в ходе эволюции обусловила наблюдающиеся в настоящее время различия в аминокислотной последовательности константных областей различных иммуноглобулинов.

Первая дупликация исходного гена, вероятно, произошла в ходе хромосомной перестройки. Последующие акты дупликации легко могли осуществляться путем неравного кроссинговера при ошибочном спаривании тесно сцепленных генов, гомологичных по структуре, но различающихся по расположению. По-видимому, это наиболее вероятный механизм увеличения числа гомологичных участков в константных областях различных генов тяжелых цепей. В дальнейшем эволюция различных легких и тяжелых цепей происходила в основном путем дупликаций и хромосомных перестроек. Гены легких и тяжелых цепей не располагаются рядом в составе одной и той же хромосомы. Генетически полиморфные сайты легких цепей (Km-система) и тяжелых цепей (Gm-система) не сцеплены между собой [78].

Генетический контроль вариабельных областей. До сих пор мы рассматривали генетический контроль только константных областей, который можно удовлетворительно объяснить в рамках представлений классической генетики. Однако подобный подход не годится для вариабельных областей. Как объяснить, что все аминокислотные последовательности вариабельных областей, проанализированные к настоящему времени, оказались различными? Можно предположить, что любой человек обладает очень большим количеством клонов плазматических клеток, каждый из которых образует иммуноглобулин со структурой вариабельного участка, характерной лишь для этого клона. Возможно также, что специфичность антитела определяется его вариабельной областью (V). При этом остаются открытыми два принципиальных вопроса.

1. Какие генетические механизмы контролируют синтез вариабельных областей?

2. Каким образом в результате их действия возникает специфичность антител'?

Соматические мутации или избирательная активация генов! Для объяснения генетического контроля вариабельных областей было предложено несколько гипотез. Наибольшую Известность получили две из них: гипотеза «соматических мутаций» и гипотеза «избирательной активации генов». Согласно гипотезе соматических мутаций, в геноме человека имеется лишь один ген, в котором в процессе созревания В-лимфоцитов возникают многочисленные случайные мутации. На самом деле соматические мутации происходят в ходе пролиферации клеток всех типов (разд. 5.1.6). Однако эта гипотеза подразумевает наличие специфического механизма, который обеспечивает избирательное увеличение частоты соматических мутаций именно в гене вариабельной области. Можно представить себе такой механизм, например предположив, что рассматриваемый участок ДНК недоступен для действия ферментов репарации.

104 4 Действие генов

Соматические мутации, несомненно, случайны. Следовательно, изучение миеломных белков должно продемонстрировать полностью независимые аминокислотные замены в вариабельных областях различных антител. Конечно, в молекуле могут быть такие участки, мутации в которых недопустимы и которые поэтому должны быть идентичными во всех вариабельных областях иммуноглобулинов. Все исследованные к настоящему времени вариабельные области можно подразделить на группы, в пределах которых определенные аминокислотные замены являются общими, тогда как другие аминокислотные замены совершенно различны.

Этот факт делает более убедительной альтернативную гипотезу генетического контроля вариабельных областей. Согласно этой гипотезе, у каждого человека имеется большой набор генов, которые организованы в виде высокоповторяющейся последовательности. Однако в каждой клетке активным может быть только один из таких генов. Этот ген может каким-то образом соединиться с геном константной области полипептидной цепи, в результате образуется непрерывная молекула мРНК. Если допустить, что подобная организация генов возникла в результате многократных актов неравного кроссинговера, за которым в течение многих тысячелетий происходила ненаправленная фиксация точковых мутаций, то наблюдаемые закономерности вполне объяснимы. Мутации, которые являются общими для нескольких полипептидных цепей, очевидно, были фиксированы до того, как гены этих цепей дуплицировались; мутации, которые обнаруживаются лишь в одной цепи, по всей вероятности, возникли сравнительно недавно.

Обе гипотезы связаны с необычным для генетики допущением. Для накопления столь большого количества соматических мутаций необходимо увеличение частоты их возникновения или скорости отбора, характерное для В-лимфоцитов. Избирательное объединение одного из многих генов вариабельной области с геном константной области должно осуществляться специальным механизмом, который ранее не был обнаружен. Такое соединение не может происходить на уровне белка, так же как и на уровне РНК, поскольку мРНК уже содержит полную информацию о белке. Следовательно, оно должно происходить на уровне ДНК. Первые предположения относительно такого механизма возникли после открытия ферментов рестрикции, способных расщеплять молекулу ДНК по определенным последовательностям нуклеотидов (разд. 2.3 и 9.2). Одна из нормальных функций таких ферментов может заключаться в расщеплении ДНК с образованием протяженных фрагментов, которые впоследствии объединяются в новом порядке и только после этого транскрибируются. Изучение одних аминокислотных последовательностей не позволяло решить, какая из гипотез была верна. Для ответа на этот вопрос необходимо прямое исследование структуры соответствующих генов.

Проблема была решена с помощью методов генной инженерии (разд. 2.3). Оказалось, что сторонники обеих гипотез были отчасти правы. На рис. 4.64 представлена структура генов мыши, кодирующих легкие λ- и ϰ-цепи и тяжелые цепи иммуноглобулинов. Хотя значительная часть этих исследований выполнена на мышах, существуют убедительные доказательства сходства соответствующих генов мыши и человека.

Имеются три типа сегментов генов иммуноглобулинов, которые организованы принципиально сходным образом: гены константной области, гены вариабельной области и так называемый соединительный сегмент. Далее эти сегменты будут обозначаться соответственно буквами С, V и J - прямыми заглавными в случае участков молекул белка и курсивом в случае кодирующих их сегментов генов Впрочем, в деталях эти элементы различаются (см. рис. 4.64). Для легкой λ-цепи имеются два гена константной области. Поскольку белок содержит единственную С-область, при его синтезе должен происходить выбор одного из четырех генов С-области (по два таких гена имеется на каждой из двух гомологичных хромосом). Помимо этого, для каждого С-гена имеются собственный ген Jи один ген V. Имеется также короткий сегмент (так называемый L-сегмент), на-

4. Действие генов 105

Рис. 4.64. Организация генов Ig до и после соматической перестройки. Изображенный вариантодин из многих возможных. Перестройка происходит до и во время созревания В-клеток; ген в перестроенном состоянии кодирует молекулы IgG (изображена лишь половина молекулы). Пунктирная линия от процессированного гена и к молекуле IgG означает, что в состав последнего может войти либо ϰ-, либо λ-цепь [1329а].

ходящийся слева от V, внутри которого находится стартовая точка транскрипции. Ген легкой ϰ-цепи содержит один С-сегмент и 5 различных J-сегментов. Гены V-области весьма многообразны, по современным оценкам их насчитывается 90-300. Среди последовательностей, кодирующих Н-цепь, обнаружено 8 различных С-сегментов. Продукт гена Сμприсутствует в белке IgM, продукты генов Cδ, γ1, γ2b, γвходят в состав иммуноглобулинов IgD, IgG, IgA. Существуют также 4 различных гена J-сегмента. В отличие от легких цепей, тяжелые цепи содержат дополнительную аминокислотную последовательность, которая кодируется D-сегментом, присутствующим в 12 копиях. Кроме того, имеется 100-200 LH-VHсегментов.

В ходе дифференцировки клеток, образующих антитела, один L-Vсегмент соединяется с одним J-сегментом (а в случае клонов, образующих тяжелые цепи, с одним D- и одним J-сегментом) и одним С-сегментом. Поэтому возможно огромное количество комбинаций: если в геноме содержится 2Vλ, 3Jλ, 300Vϰи 4Jϰ -сегмента, то общее число различных вариантов легких цепей равно 1206 (2x3 + 300 х 4). Подобным образом, если имеется 200VH-, 12D- и 4Jн-сегмента, то максимальное число различных тяжелых цепей должно быть 9600 (200 VHх 12D х 4JH). He будем далее углубляться в вопрос о доказательстве гипотезы избирательной активации генов. Прямые исследования генов показали, что их перестройка осуществляется в ходе дифференцировки В-лимфоцитов, а также до нее. В настоящее время на изучении этой проблемы сосредоточили свои усилия несколько групп исследователей. Некоторые факты уже выяснены. В частности, оказалось, что воссоединение различных сегментов генов осуществляется не с абсолютной точностью, и это может служить дополнительным источником разнообразия. В других случаях подобные неточности приводят к сдви-

106 4 Действие генов

гу правильной рамки считывания, в результате нарушается трансляция белка Таким образом, многообразие антител достигается ценой некоторых потерь Иногда в месте объединения происходит инсерция одного или нескольких нуклеотидов

Однако перечисленные факторы, определяющие различия, не могут полностью объяснить многообразие антител В действительности сторонники гипотезы соматических мутаций оказались отчасти правы В настоящее время путем сравнения гомологичных нуклеотидных последовательностей генов иммуноглобулинов разных индивидов получены убедительные данные, доказывающие, что в них происходят многочисленные соматические мутации В большинстве случаев это простые нуклеотидные замены, которые приводят к замещению одной аминокислоты (см разд. 5.1.4) Они были обнаружены не только в V-сегменте, но также и в J- и D-сегментах

Итак, существуют 4 источника разнообразия антител в клетках

1) только одна из множества копий V-сегментов соединяется с соответствую-

Рис. 4.65. Пространственная модель вариабельной области ϰ. цепи, построенная на основании данных рентгеноструктурного анализа. Цепь состоит как бы из двух слоев (нижний слой обозначен светло-серым). Сегменты связаны водородными связями. Темным цветом выделены наиболее вариабельные участки, все они располагаются вокруг кармана, который данная цепь образует совместно с другой ϰ-цепью (сплошная черная линия), вероятно, именно он является участком связывания антигена. Выделенные наиболее темным цветом аминокислоты участ вуют в образовании связей со второй частью димера [1123]

4. Действие генов 107

Рис. 4.66. В ходе эмбрионального развития и дифференцировки образуется множество стволовых клеток, способных производить антитела. Каждая из них может синтезировать один определенный вид антител, так как ген константной области (светлый прямоугольник) способен присоединяться только к одному из множества генов вариабельной области (темный прямоугольник). Специфический антиген стимулирует пролиферацию клона стволовых клеток, способных производить соответствующее ему антитело. В конечном счете это приводит к увеличению синтеза данного антитела [1123].

щими J-, Dи С-сегментами с образованием функционального гена;

2) соединение концов сегментов происходит не с абсолютной точностью;

3) в месте соединения возможно встраивание дополнительных нуклеотидов;

4) помимо рекомбинации (как в трех предыдущих случаях) источником многообразия могут служить соматические мутации в V-, J- и D-сегментах.

Благодаря всем перечисленным механизмам один организм синтезирует многие тысячи различных антител. Отметим здесь другой факт, важный с эволюционной точки зрения. Как говорилось в разд. 3.5.5, иммунный ответ определяется, в частности, специфичностью HLA. Поэтому было вполне логично исследовать возможные сходные участки в аминокислотных последовательностях этих белков [1173; 1329а]. Как показано на рис. 3.39, молекула HLA состоит из тяжелой и легкой цепей. Тяжелая цепь включает внутриклеточную часть молекулы, а также участки α3, α2, α1. Была обнаружена статистически значимая гомология в аминокислотной последовательности между участками HLA-B7 и С-областью IgG. Эти белки имеют и другие общие структурные особенности, например у них совпадают три инвариантных аминокислотных остатка (два остатка цистеина и один остаток треонина), имеются также целые участки гомологии вокруг цистеина. В общем аминокислотные последовательности таковы, что возможно образование трехмерной структуры, весьма близкой к структуре молекулы IgG. Все эти данные, несомненно, указывают на общее эволюционное происхождение семейства генов HLA и генов иммуноглобулинов. Мы вернемся к этому вопросу в гл. 7.

Вариабельная область и специфичность антител. Как уже отмечалось, специфичность антител определяется вариабельными областями молекулы, которые различаются по аминокислотным последовательностям. Внутри вариабельной области имеются участки, в которых вариабельность выше, чем в других.

Антигены связываются со специфическими участками молекулы антитела. Если специфичность антитела действительно определяется различиями в аминокислот-

108 4. Действие генов

ных последовательностях, то участки связывания следует искать среди наиболее вариабельных областей. Для х-цепей это участки аминокислот 28-34, 50-56, 91-96. Пространственную структуру молекул белков определяют методом рентгеноструктурного анализа. В настоящее время рентгеноструктурные данные получены для вариабельной области ϰ-цепи (рис. 4.65). Полипептидная цепь изогнута так, что образует двуслойную структуру, причем соседние сегменты одного слоя антипараллельны и связаны друг с другом водородными связями. Получены данные в пользу того, что вариабельные области λ-цепей и тяжелых цепей организованы сходным образом. Темно-серые участки на рисунке соответствуют гипервариабельным районам. Обозначены также аминокислоты, обеспечивающие контакты между двумя мономерами молекулы антитела. Две такие вариабельные области молекулы формируют карман диаметром 15А, стенки которого образованы гипервариабельными участками [1123]. Весьма вероятно, что этот карман является частью участка связывания антигена и его форма определяет специфичность антитела. В свою очередь форма кармана определяется аминокислотной последовательностью гипервариабельных участков. Еще на ранних этапах развития иммунологии специалисты зачастую сравнивали взаимодействие антигена и антитела с ключом и замком. Пространственная модель, представленная на рис. 4.65, показывает, что эти представления, по-видимому, не просто метафора.

4.5. Фармакогенетика и экогенетика 4.5.1. Фармакогенетика

Развитие биохимической генетики человека, обнаружение наследственных дефектов ферментов, привели к возникновению новой отрасли генетики - фармакогенетики. Еще Гэррод, основатель биохимической генетики человека [75] (разд. 1.5), и известный английский генетик Холдейн [87] отмечали, что необычные реакции на лекарственные препараты и пищевые продукты могут объясняться биохимической индивидуальностью людей. Действительно, в 50-е годы было показано, что некоторые аномальные реакции, связанные с применением лекарств, обусловлены различиями в свойствах ферментов. Так, гемолитическая анемия, которая встречается у некоторых людей при употреблении в пишу бобов, а также при действии различных лекарств, в действительности объясняется недостаточной активностью глюкозо-6-фосфат-дегидрогеназы (G6PD) (разд. 4.2.2.2). Было установлено, что с одним из вариантов псевдохолинэстеразы [1195; 1152] связана длительная задержка дыхания после введения суксаметониума - препарата, который широко применяется для релаксации мышц во время хирургических операций. Выяснилось, что значительная вариабельность уровня изониазидгидразина в крови обусловлена генетически детерминированными различиями в активности ацетилтрансферазы у разных индивидов [1073].

Эти факты побудили одного из авторов этой книги (А. Мотульски) высказать предположение о том, что аномальная реакция на лекарственные препараты иногда может быть связана с наследственной ферментативной недостаточностью [1222]. Другой автор (Ф. Фогель) первым предложил термин «фармакогенетика» [1337].

Система G6PD(30590). Эта система уже обсуждалась в разд. 4.2. Ген, контролирующий синтез этого фермента, локализован в Х-хромосоме, поэтому гемолитические реакции на лекарственные препараты, обусловленные недостаточностью G6PD, проявляются главным образом у мужчин. У гетерозиготных женщин часто регистрируется промежуточный уровень активности фермента, причем у некоторых гетерозигот он приближается к нормальному, а у некоторых - к уровню, характерному для больных (рис. 4.6) [1234]. В крови таких гетерозигот присутствуют две популяции эритроцитов - нормальная и мутантная. Количественное соотношение между ними обычно близко к 1:1, но может и варьировать в отдельных случаях от 1:99 до 99: 1 [999]. Частота встречаемости G6PD-зависимой реакции на некоторые лекарства у женщин зависит от частоты соответствующего аллеля в популяции и от степени

4 Действие генов 109

инактивации Х-хромосомы, которая определяется количественным соотношением нормальных и дефектных по G6PD клеток. Среди женщин с клиническими формами недостаточности, лишь незначительная часть приходится на гомозигот, в основном это гетерозиготы, у которых преобладают мутантные клетки с низким уровнем фермента. Различные лекарственные препараты с возможным гемолитическим эффектом также различаются по их потенциальной способности вызывать нарушения в крови.

Установлена связь некоторых распространенных вариантов G6PD с гемолитической реакцией (табл. 4.4). Показано, что помимо лекарственных препаратов, гемолиз может вызываться бактериальной или вирусной инфекцией, проявляться при желтухе новорожденных, когда печень еще не способна перерабатывать билирубин (продукт метаболизма гемоглобина), который выделяется при гемолизе.

Наиболее тяжелая форма гемолиза детерминируется такими мутантными формами G6PD, как Mediterranean и Canton (табл. 4.4). Для этих случаев характерно не только уменьшение активности, но и нестабильность молекул фермента [1146]. При распространенном типе недостаточности G6PD, характерном для лиц африканского происхождения, молодые эритроциты, возраст которых составляет менее 60 дней (продолжительность жизни нормального эритроцита составляет 120 дней), содержат достаточные количества фермента, а характерная для этого заболевания нестабильность фермента проявляется только в старых эритроцитах. В этом случае происходит лишь ограниченный гемолиз и летальные исходы почти не наблюдаются.

При более тяжелом гемолизе, который характерен для средиземноморского варианта, исход может быть и фатальным. Этот вариант отличается от недостаточности африканского типа также тем, что обусловленный им гемолиз индуцируется большим числом лекарственных препаратов. Для большинства других форм фермента данные о спектре потенциально опасных препаратов еще не получены.

Варианты псевдохолинэстеразы [1104]. Препарат суксаметониум, или сукцинилдихолин, широко применяется в качестве релаксанта мышц при хирургических операциях. Фермент превдохолинэстераза катализирует гидролиз препарата, благодаря чему в норме его действие непродолжительно. У редко встречающихся больных этот фермент обладает очень низким сродством к препарату, что приводит к длительной задержке дыхания вследствие подавления деятельности дыхательных мышц. В таких случаях в течение многих часов, пока пациенту не введут очищенный фермент или плазму, содержащую активную псевдохолинэстеразу, приходится прибегать к искусственному дыханию. Причиной ненормального метаболизма препарата служат различные мутации как в гетерозиготном, так и в компаунд-гетерозиготном состоянии, изменяющие активный центр псевдохолинэстеразы, которая в этих случаях не способна эффективно гидролизовать субстрат. Наиболее часто встречается мутантный аллель СНЕ1D. Аллель, кодирующий нормальную псевдохолинэстеразу, обозначают СНЕ1U. Примерно 3-4% людей европейского происхождения являются гетерозиготами ( СНЕ1U/СНЕ1D), а один из каждых 3500 индивидов - гомозиготой по мутантному аллелю. Вместе они составляют группу риска по продолжительной задержке дыхания при введении суксаметониума. Измененный фермент обычно идентифицируют in vitro по его устойчивости к ингибитору дибукаину. У мутантных гомозигот фермент относительно устойчив к дибукаину, гетерозиготы проявляют промежуточную устойчивость (табл. 4.21). Другой аллель псевдохолинэстеразы ( СНЕ1S) обусловливает полное отсутствие активности этого фермента. Гомозиготы по этому аллелю ( СНЕ1S/ / СНЕ1S) очень чувствительны к действию суксаметониума, так как в плазме крови этих больных псевдохолинэстеразы нет. Аллель СНЕ1Sраспространен среди эскимосов Аляски. Еще один мутантный аллель (СНЕ1F) детерминирует устойчивость к фториду. Обычно в качестве субстрата при исследованиях псевдохолинэстеразы применяют бензоилхолин. Однако у некоторых

110 4. Действие генов

Таблица 4.21. Типы псевдохолинэстеразы и чувствительность к суксаметониуму

Генотип

Активность

Дибукаиновое число

Фторидное число

Частота фенотипа в европейских популяциях1'

Чувствительность к суксаметониуму

CHE1U/CHE1U

Нормальная

80

59

95%

Нет

CHE1D/CHE1D

Умеренно снижена

22

27

1:3200

+ + +

CHE1S/CHE1S

Отсутствует

0

0

1:170 000

+ + + +

CHE1F/CHE1F

Немного снижена

66

35

1 :28 000

+ +

CHE1D/CHE1S

Снижена

22

27

1:11000

+ + +

CHE1D/CHE1F

Немного снижена

49

33

1:2500

+ + +

CHE1F/CHE1S

»

67

43

1:33 000

+ +

CHE1U/CHE1D

»

62

48

3,5%

( + )

CHE1U/CHE1F

»

74

50

1,2%

( + )

CHE1U/CHE1S

»

80

59

1:200

Неизвестна

1)Приводится исходя из частот 3,5% для атипичного аллеля, 1,2% для устойчивого к фториду аллеля и 0,5% для «молчащего» аллеля. Частоты гомо- и гетерозигот рассчитаны с помощью экстраполяции теоремы Харди—Вайнберга на множественные аллели (По Technical reports series № 524 Geneva 1973 [969])

больных с длительной задержкой дыхания нарушение фермента удается обнаружить только тогда, когда для этого используют непосредственно сукцинилдихолин [1103].

Варианты ацетилтрансферазы [1062; 1204, 1271]. Многие лекарственные препараты ацетилируются в печени ферментом N-ацетилтрансферазой. В число этих препаратов входят изониазидгидразин, фенелзин, дапсон, салицилазосульфопиридин, сульфаметазин, нитрозепам, гидролазин и прокаинамид. Разные индивиды отличаются по способности ацетилировать контрольный препарат, например изониазидгидразин или сульфаметазин, при введении in vivo. Приблизительно 50% европейцев и африканцев инактивируют препарат медленно, тогда как 80-90% жителей Азии - быстро. Семейный анализ показал, что люди, медленно инактивирующие препараты, лишены активности ацетилазы, а быстро инактивирующие обладают одной или двумя копиями гена, который кодирует ацетилтрансферазу. Точный биохимический механизм, отвечающий за полиморфизм N-ацетилтрансферазы, не установлен. Тесты для оценки ацетилирования in vitro в настоящее время не разработаны, вот почему, чтобы выяснить способность конкретного человека осуществлять ацетилирование, ему приходится вводить контрольный препарат. С этой целью можно с успехом использовать кофеин в стандартной дозировке, которая эквивалентна его содержанию в чашке кофе, поскольку основной продукт ацетилирования кофеина (5-ацетиламино6-формиламино-3-метилурацил) выделяется с мочой только у людей, способных к быстрой инактивации препаратов [1113]. Среди клинических последствий полиморфизма способности к ацетилированию следует отметить большую частоту полинейропатии в ответ на изониазидгидразин среди «медленно инактивирующих». Побочные эффекты, подобные явлениям при волчанке, чаще встречаются у «медленно инактивирующих» при действии гидролазина и прокаинамида. У «медленно инактивирующих» сильнее выражены гематологические эффекты дапсона и салицилазосульфопиридина. Возможно, «быстро инактивирующим» требуется вводить более высокие дозы различных препаратов для достижения требуемого терапевтического эффекта. Высказывались также предположения о том, что изониазидгидразин является у «быстрых инактиваторов» токсичным для печени, так как ацетилизониазид более токсичен для печени, чем изониазидгидразин [1280].

4. Действие генов 111

Кривые распределения и действие генов. При моногенном типе наследования должны наблюдаться качественные различия между продуктами нормального и мутантного генов. Если есть возможность производить измерение на уровне продукта гена, то при графической обработке результатов обычно удается идентифицировать различные генетические классы в виде отдельных мод на кривой распределения. Кривая распределения активности G6PD у мужчин с нормальной активностью и с дефектом этого фермента имеет две неперекрывающиеся моды. Все три генетических класса вариантов псевдохолинэстеразы можно легко идентифицировать в опытах со специфическими ингибиторами. Этот метод

Рис. 4.67. Распределение уровней активности холинэстеразы сыворотки у 11 людей с необычайно высокой чувствительностью к суксаметониуму и 58 их родственников (Harris et al., 1960). Каждый квадратик соответствует одному человеку; суксаметониум-чувствительные индивиды выделены черным цветом А. Распределение активности холинэстеразы сыворотки. Активность фермента определяли манометрическим методом с использованием в качестве субстрата ацетилхолина. Б. Распределение активности у лиц, отнесенных к обычному фенотипу. В. Распределение активности у лиц, имеющих промежуточный фенотип. Г. Распределение активности у лиц, имеющих атипичный фенотип. Обратите внимание, что распределение А является суммой распределений Б, В и Г.

позволяет получить прямые качественные данные о природе мутации. Однако, если измеряется уровень псевдохолинэстеразы в крови, а не характер ее ингибирования, различить три класса вариантов столь же просто не удается, поскольку между нормальными гомозиготами и гетерозиготами и между гетерозиготами и мутантными гомозиготами наблюдается перекрывание (рис. 4.67).

Эти данные показывают, что мультимодальную кривую распределения можно рассматривать как свидетельство моногенного наследования признака. Однако, если об активности мутантного гена судят не по его первичному продукту, на результаты будут влиять другие генетические факторы и факторы среды, что в конечном счете может обусловить мономодальный характер кривой. Поскольку мономодальная форма кривой обычно интерпретируется как доказательство полигенного определения признака (разд. 3.6), в тех случаях, когда в распоряжении исследователей имеются только данные о распределении частот, выводы о механизме наследования следует делать с осторожностью.

Полиморфизм по реакции на дебрисохин и спартеин [971; 1072, 1305]. Распространенный полиморфизм, проявляющийся у 5-8% европейцев и африканцев, связан с дефектом окисления ряда лекарственных препаратов (табл. 4.22). Он был обнаружен независимо при изучении действия антигипертензивного препарата дебрисохина, имитирующего окситоцин, и антиаритмического препарата спартеина. Индивиды, способные быстро окислять эти препараты, могут быть как нормальными гомозиготами, так и гетерозиготами, тогда как медленное окисление свойственно лишь мутантным гомозиготам. Точная биохимическая природа полиморфизма не установлена, однако имеются надежные данные в пользу того, что изменен компонент системы цитохрома Р-450 печени (эта система участвует в метаболизме соединений, поступающих извне) [1050; 1219; 1258]. К сожалению, в настоящее время выявить окислительный полиморфизм in vitro невозможно. Для определения окислительно-

112 4. Действие генов

Таблица 4.22. Полиморфизм по спартеину/дебрисохину: патологические реакции у людей с «медленным» метаболизмом [1071]

Препарат

Реакция

Дебрисохин

Пониженное давление

Спартеин

Усиленное действие, имитирующее окситоцин, и сердечная недостаточность

Фенацетин

Метгемоглобинемия

Фенформин

Молочный ацидоз

Пергексилин

Периферическая нейропатия и агранулоцитоз

Каптоприл

Агранулоцитоз

D-Пеницилламин

Протеинурия и тромбоцитопения

Нортриптилин

Пониженное давление

Гуаноксан

Пониженное давление

Метиамид

Агранулоцитоз

Энкаинид

Препарат не действует: активен только препарат, подвергшийся метаболизму

β-блокаторы

Пропранолол

Брахикардия и пониженное давление

Метопролол

»

Тимолол

»

Алпренолол

»

Буфуралол

»

го статуса индивида необходим прием внутрь контрольного препарата и анализ его метаболизма в моче (т.е. определение соотношения 4-оксидебрисохина к дебрисохину). В настоящее время исследуется вклад этого полиморфизма в побочное действие так называемых бета-блокаторов [1051].

Полиморфизм по способности окислять мефенитоин [1353]. Показано, что окисление противосудорожного препарата мефенитоина контролируется отдельным геном, не сцепленным с полиморфизмом по реакции на дебрисохин. Относительно высокая частота побочных эффектов мефенитоина обусловлена, вероятно, тем, что 2-5% людей не способны окислять этот препарат. Окисление мефенитоина (дилактин), по-видимому, контролируется белковым продуктом этого же полиморфного гена.

Другие моногенные фармакогенетические признаки. Известен ряд других важных с точки зрения фармакогенетики состояний, которые наследуются как простые менделевские признаки. Они перечислены в табл. 4.23.

Таблица 4.23. Моногенные фармакогенетические признаки

Энзиматические или метаболические аномалии

Результат и/или заболевание

А. Хорошо изученные признаки (см. текст)

а) Часто встречающиеся признаки

Некоторые варианты G6PD

Гемолиз

Полиморфизм по N-ацетилтрансферазе

Понижено ацетилирование ряда препаратов (см. текст)

Слабое окисление (дебрисохин/спартеин)

Неспецифические реакции на многие препараты (см. табл. 4.22)

б) Редкие признаки

Варианты псевдохолинэстеразы

Продолжительная задержка дыхания под действием суксаметониума

Нарушение метаболизма кальция

Злокачественная гипертермия после ингаляционной анестезии

Некоторые нестабильные гемоглобины

Гемолиз

Различные порфирии

Ряд препаратов усиливает симптомы заболевания

Недостаточность метгемоглобин-рсдуктазы

Цианоз, вызываемый некоторыми препаратами-окислителями

Б. Менее полно изученные признаки

Полиморфизм по параоксоназе

Люди с пониженной активностью фермента (~50%) более подвержены отравлению паратионом

Слабое окисление мефенитоина

Тяжелые побочные эффекты мефенитоина

Полиморфизм по тиопурин-метилтрансферазе (цитозоля) [1354]

Неэффективность тиопуриновых препаратов (например, меркаптопурина)

Полиморфизм по катехол-0-метилтрансферазе [2239; 1468]

Неэффективность L-допа и α-метилдопа

Недостаточность

эпоксидгидролазы [1311]

Гепатотоксичность фенитоина

4 Действие генов 113

Таблица 4.24. Результаты измерений скорости метаболизма лекарственных препаратов или стационарного уровня препаратов у близнецов [1270]

Препарат

Авторы, число пар близнецов

Измеренный параметр

Диапазон изменений

rМЗ3)

rДЗ3)

h224)

Антипирин 18мг/кг (одной дозой, перорально)

Vesell and Page (1968) 9МЗ, 9ДЗ

Время полураспада в плазме (ч)

5,1-16,7

0,93

-0,03

0,99

Фенилбутазон 6 мг/кг (одной дозой, перорально)

Vesell and Page (1968) 7M3, 7ДЗ

Время полураспада в плазме (дни)

1,2-7,3

0,98

0,45

0,99

Дикумарол 4 мг/кг (одной дозой, перорально)

Vesell and Page (1968) 7M3, 7ДЗ

Время полураспада в плазме (ч)

7,0-74,0

0,99

0,80

0,98

Галотан 3,4 мг (одной дозой, внутривенно)

Cascorbi et al. (1971) 5M3, 5ДЗ

Выделение с мочой трифторацетата натрия за 24 ч

2,7-11,4

0,71

0,54

0,63

Этанол 0,5 г/кг (одной дозой, перорально)

Luth (1939) 10M3, 10ДЗ

β60 (мг/мл-ч) 1) СДЭ (мг/кг • г) 2)

0,051-0,141 50,00 109,63

0,64

0,77

0,16 0,45

0,63 0,67

1 мл/кг (одной дозой, перорально)

Vesell et al. (1971)

7M3, 7ДЗ

β60 (мг/мл-ч) 1)

0,11-0,24

0,98

-0,38

0,98

1,2 мл/кг (одной дозой, перорально)

Kopun and Propping (1977) 19M3, 21ДЗ

Скорость всасывания (мг/мл • 30 мин)

0,20-1,12

0,56

0,27

0,57

Дифенилгидантоин 100 мг (одной дозой, внутривенно)

Andreasen et al. (1973) 7M3, 7ДЗ

Время полураспада в сыворотке (ч)

7,7-25,5

0,92

0,14

0,85

Литий 300 мг/12 ч (в те-

Dorus et al (1975) 5M3, 5ДЗ

Концентрация в плазме (м-экв/л)

0,16 0,38

0,94

0,61

0,86

чение 7 дней, перорально)

Концентрация в эритроцитах (м-экв/л)

0,050-0,102

0,98

0,71

0,83

Соотношение концентраций эритроцитов и плазмы (через каждые 3 дня после введения)

0,18-0,56

0,84

0,62

0,92

Амобарбитал 125 мг (одной

Endrenyi et al., (1976)

Скорость осветления плазмы (мл/мин)

16,0-67,2

0,87

0,55

0,83

дозой, внутривенно)

7M3, 7ДЗ

Скорость очистки в пересчете на вес 1/(кг • ч)

1,76-6,16

0,92

0,60

0,80

Константа скорости выведения (ч–1)

2,09-8,17

0,93

0,03

0,91

Нортрипгилин 0,6 мг/кг в день (в течение 8 дней) перорально

Alexanderson et al. (1969) 19M3, 20ДЗ

Стационарный уровень в плазме (нг/мл)

8-78

Опубликованные данные не позволяют произвести такой расчет, но МЗ близнецы гораздо более сходны, чем ДЗ

114 4 Действие генов

Продолжение табл. 4.24

Препарат

Авторы, число пар близнецов

Измеренный параметр

Диапазон изменений

rМЗ

rДЗ3)

h224)

Салицилат натрия 40 мг/кг (одной дозой, внутривенно)

Furst et al. (1977)

7МЗ, 7ДЗ

Скорость распада салицилата в сыворотке

(мг/дл • ч)

0,64-1,02

0,64

0,32

0,86

Аспирин 65 мг/кг в день

См. Propping [1270]

Уровень салициловой кислоты в сыворотке

11,9-36,4

0,90

0,33

0,98

(в течение 3 дней) перорально)

Стационарная скорость выделения салицилмочевой кислоты (мг/кг • ч)

0,84-1,91

0,94

0,76

0,89

Мультифакториальная фармакогенетика. В ряде исследований, основанных на близнецовом методе, было продемонстрировано, что генетические факторы играют существенную роль в определении времени полураспада лекарственных препаратов. Во всех опытах, когда препарат вводили монозиготным и дизиготным близнецам, время полураспада различалось гораздо меньше для монозиготных близнецов [1335; 1270]. Расчеты коэффициента наследуемости, основанные на подобных данных, показали, что генетические факторы вносят большой вклад в общий размах времени полураспада препаратов, в некоторых случаях он оценивается в 99% (табл. 4.24).

Если препарат исследовать на большой выборке из нормальной популяции, наблюдается значительная вариабельность уровня препарата в крови. И хотя на этот показатель влияют различные факторы, решающую роль играют различия в метаболизме препаратов. Время полужизни (или устойчивый уровень препарата) является более или менее постоянным для индивида и, согласно результатам исследований на близнецах, контролируется в основном генетическими факторами. Биохимические механизмы конкретных реакций метаболизма препаратов в настоящее время не установлены. Вариации времени полураспада для большинства препаратов могут быть представлены в виде колоколообразной кривой Гаусса (рис. 4.68). После введения средней дозы препарата у определенной части популяции (по обе стороны от моды) в организме устанавливается либо слишком высокий, либо слишком низкий уровень препарата. С одной стороны, при высоком уровне препарата это может приводить к токсичности, а с другой, при низком уровне - к отсутствию терапевтического эффекта. После того как было доказано, что генетические факторы играют заметную роль в метаболизме большинства лекарственных препаратов, фармакогенетика из узкой области знаний о необычных реакциях на препараты превратилась в центральную дисциплину фармакологии и терапии [1229].

Фармакогенетическая вариабельность на уровне отдельных органов. Генетическая вариабельность на уровне отдельных органов уже рассматривалась при обсуждении дефекта G6PD в эритроцитах. Действие алкоголя на мозг будет обсуждаться в разд. 8.2.3.5. Кроме того, побочные эффекты некоторых психотропных препаратов также обусловлены генетически [1271]. Напри-

4. Действие генов 115

Рис. 4.68. Постоянная концентрация препарата в плазме и биологический эффект.

мер, при лечении фенотиазином может развиться болезнь Паркинсона, причем риск заболевания втрое выше у людей, родственники которых больны паркинсонизмом [1272]. «Тардивная дискинезия», выражается в ненормальных и неконтролируемых движениях, нередко встречается у больных, получающих психофармакологические препараты; при этом наблюдается значительная внутрисемейная корреляция. Подобная терапия оказывает воздействие на работу нейромедиатора дофамина (разд. 8.2.3.6). Поэтому интересно, что при действии нейролептиков в хвостатом ядре крыс возрастает количество дофаминовых рецепторов, отдельные линии животных различаются по этому признаку. Шизофрения у людей может быть вызвана такими препаратами, как ЛСД, амфетамин и даже злоупотреблением алкоголем (алкогольные галлюцинации). Случаи заболевания шизофренией отмечаются значительно чаще у прямых родственников лиц, уже страдающих этим заболеванием.

Редкое, но опасное осложнение общей анестезии - злокачественная гипертермия - часто бывает связана с повышенной мышечной ригидностью. Примерно у половины обследованных больных отмечалось неполное аутосомно-доминантное наследование. Многие пробанды страдают от незначительных мышечных аномалий, таких как птоз, судороги, вывихи или ушибы. Отмечались отклонения в электромиограммах, а также незначительные цитологические признаки миопатии.

4.5.2. Экогенетика [143; 969; 1228; 1250]

Концепция экогенетики, впервые предложенная в 1971 г. Брюэром [1017], возникла в результате развития фармакогенетики. Лекарственные препараты составляют лишь небольшую долю химических факторов окружающей среды, воздействию которых подвергается человеческое сообщество. Существует множество других потенциально токсичных веществ, которые могут поражать людей с генетической предрасположенностью. Экогенетика расширяет центральную концепцию фармакогенетики о различных генетически обусловленных реакциях на лекарственные препараты, объясняя сходным образом реакции на другие факторы среды. Поскольку исследования, основанные на близнецовом методе, свидетельствовали о том, что метаболизм лекарственных препаратов подвержен генетическому контролю, можно было заключить, что превращение любых химических агентов также контролируется генетически. Экогенетика человека изучает реакцию человеческого организма на различные агенты среды. В ее задачи входят объяснение различной чувствительности отдельных людей к действию потенциально опасных внешних агентов и изучение индивидуальных особенностей адаптации к окружающей среде. Рабочая гипотеза фармакогенетики заключается в том, что биохимические особенности организма определяют характер реакции на внешний агент, особенно в тех случаях, когда уже известно, что данное действие вызывает у людей неодинаковые реакции. Подобно рассмотренным явлениям фармакогенетики, некоторые экогенетические реакции определяются действием редких мутантных генов и обусловливают резко аномальный ответ или идиосинкразию. Причиной разнообразия реакций может быть и полиморфизм. По всей вероятности, чаще всего экогенетические реакции определяются несколькими генами. Необычные ответные реакции проявляются у немногих людей, которые по своему генетическому статусу значительно отклоняются от моды распределения.

116 4 Действие генов

Канцерогены. Недавние исследования, проведенные на бактериальных системах (разд. 5.2.2), позволяют предполагать, что большинство мутагенов являются одновременно канцерогенами. Вероятно, принципы фармакогенетики справедливы и для потенциально канцерогенных веществ. Тот факт, что у большинства людей при действии химических агентов или других раздражителей рак обычно не развивается, можно отчасти объяснить генетическими механизмами. Неоплазии возникают только у людей с отклонениями в метаболизме, например в организме которых данное вещество медленно инактивируется или превращается в еще более канцерогенное. Генетические варианты ферментов репарации (разд. 5.1.6.3) или иммунного надзора в мутантных клетках также могут приводить к раковым заболеваниям.

Под действием ферментативной системы арилгидроксилазы полициклические углеводороды в организме человека могут превращаться в более мощные канцерогены. Данные близнецового и семейного анализа показывают, что уровень этого фермента контролируется генетически. Точный механизм пока не установлен, хотя высказывались предположения, что у человека наследование моногенное [1160], как и у мышей в случае аналогичной ферментативной системы [1235]. Однако более вероятно, что это полигенный признак [1235; 1026]. Так или иначе, люди с высокоактивной арилгидроксилазой, вероятно, более подвержены риску раковых заболеваний, индуцированных полициклическими углеводородами, например раку легких в результате курения [1161; 1068].

Совсем недавно для лимфоцитов человека описан генетический полиморфизм по глутатионредуктазе [1296]. Этот фермент играет важную роль в биологическом превращении и детоксификации различных эндогенных и поступающих извне соединений. В исследованной выборке, состоящей из 248 человек, обнаруживалось четкое тримодальное распределение. 133 человека обладали низкой, 94 - высокой, и 21 - очень высокой ферментативной активностью. Данные, полученные при обследовании 8 семей, можно было объяснить простым аутосомным кодоминированием. Вполне возможно, что люди с высокой активностью фермента в печени лучше защищены от вредного воздействия химически активных соединений.

Метаболизм конкретных соединений изучен еще недостаточно, чтобы с уверенностью можно было говорить о влиянии генетических вариаций у человека на канцерогенные эффекты факторов среды. К числу механизмов канцерогенеза, возможно, следует отнести и полиморфизм по ферментам репарации. Больные генетическими нарушениями систем, репарирующих мутации (анемия Фанкони, синдром Блума, атаксия-телеангиэктазия, пигментная ксеродерма), часто заболевают различными формами рака. Интересно, что среди гетерозиготных носителей этих заболеваний (их довольно много в человеческих популяциях) частота заболевания раком тоже повышена, но гетерозиготность по пигментной ксеродерме становится фактором риска лишь после воздействия мощного солнечного излучения (разд. 4.2.2.8). Поскольку многие формы рака связаны, по-видимому, с факторами среды, воздействию которых подвергается большинство населения, именно генетический подход может объяснить, почему заболевание развивается только у некоторых людей.

Недавно было предпринято исследование полиморфизма по окислению лекарственных препаратов типа дебрисохин/спартеин. Изучали 245 больных раком легких и 234 контрольных курильщика (рис. 4.69). Изначально предполагалось, что в организме людей, способных к быстрому окислению, может происходить более полная инактивация канцерогенных веществ табачного дыма. Полученные результаты свидетельствуют в пользу этого предположения: среди больных раком оказалось меньше «медленных окислителей» (т. е. людей, у которых обе копии гена были представлены полиморфными вариантами), чем в контроле (1,9% против 9% в контроле). Более того, распределение «быстрых окислителей» (т. е. нормальных гомозигот и гетерозигот по этому гену) среди больных раком сдвинуто таким образом, что позволяло предполагать более высокую частоту гомо-

4 Действие генов 117

Рис. 4.69. А. Окисление дебрисохина. Б. Распределение соотношения метаболитов дебрисохин/4-гидроксидебрисохин в моче у курильщиков (контроль) (А) и у больных раком легких (Б) [169]

зигот по гену, определяющему быстрое окисление. Действительно, 77% раковых больных оказались гомозиготами по этому гену и 22%-гетерозиготами, тогда как в контроле эти частоты составили соответственно 49 и 42% (больные с раком легких р2= 0,016, 2 pq= 0,22, q2= 0,77, контрольная выборка: р2= 0,09, 2pq= 0,42, q2 = 0,49).

Хотя приведенные данные позволяют предполагать наличие генетического контроля этого полиморфизма, не исключено, что результаты исследований (т.е. гидроксилирование дебрисохина в печени и выделение продукта реакции с мочой) искажаются самим ходом ракового заболевания. Поэтому для окончательного вывода о наследственной природе полиморфизма необходим семейный анализ.

Рак мочевого пузыря эпидемиологически может быть связан с действием аминов, производимых химической промышленностью. Было проведено 7 исследований корреляции полиморфизма по ацетилированию и рака мочевого пузыря у 633 больных и соответствующей контрольной выборки [1268]. В целом, по данным этих исследований риск заболеть раком у «медленных инактиваторов» лишь в 1,3 раза выше. Из этого следует, что скорость ацетилирования играет незначительную роль в развитии рака мочевого пузыря, связанного с канцерогенностью неацетилированных аминов.

118 4. Действие генов

Сообщение о том, что у курильщиков, больных раком мочевого пузыря, котинина выделяется значительно больше, чем никотин-1-н-оксида, требует подтверждений. Однако достаточно интересно само предположение о том, что дефекты метаболизма никотина связаны с риском рака мочевого пузыря.

Недостаточность α1-антитрипсина (10740). Недостаточность α1-антитрипсина обусловлена Z-аллелем в гомозиготном состоянии и вызывает предрасположенность к ранней обструкции дыхательных путей. У гетерозигот по этому признаку функция легких несколько нарушена. Возможно, что на частоту заболеваемости у гетерозигот влияют также степень загрязнения окружающей среды и курение [1095; 653].

Параоксоназа [1231]. Широко используемый инсектицид - паратионин - превращается в печени в параоксон, который далее окисляется параоксоназой сыворотки. У европейцев наблюдается четкое бимодальное распределение уровня активности фермента, причем у 50% населения этот фермент имеет низкую активность. Семейный анализ показал, что лица, имеющие низкую активность параоксоназы, являются гомозиготами по аллелю, кодирующему низкоактивный фермент (его частота в популяции 0,7). Сложнее отличать гомозигот с высокоактивным аллелем от гетерозигот. Эпидемиологические данные о значении этого полиморфизма для людей, подвергшихся действию паратионина, в настоящее время отсутствуют. Можно предполагать, что при низких дозах паратионина более высокий риск отравиться имеют гомозиготы. Если дозы большие, генотип не сказывается на проявлении симптомов.

Продукты питания. Наиболее ярким примером генетических различий в реакции на пищевые продукты является гиполактазия у взрослых. У всех детей в кишечнике имеется фермент лактаза, необходимый для всасывания лактозы. У большинства людей кишечная лактаза исчезает после того, как прекращается кормление грудным молоком, поэтому большинство взрослых являются толерантными к лактозе. Существует мутация, при которой способность всасывать лактозу сохраняется. Естественно, она имеет селективное преимущество в сельскохозяйственных районах, где молоко - обычный продукт питания. В Центральной и Северной Европе большинство людей имеют такой мутантный ген в количестве одной или двух копий. Утрата гена приводит к неусвоению лактозы, это состояние наследуется как аутосомный рецессивный признак. Мутация, при которой всасывание лактозы сохраняется, распространена также в Африке и в Азии в некоторых популяциях, члены которых занимаются скотоводством и ведут кочевой образ жизни. Вопрос о частотах генов, ответственных за сохранение лактазы, будет обсуждаться в разд. 7.3.1. При употреблении в пищу молока или других продуктов, содержащих лактозу, люди, не способные к ее усвоению, страдают метеоризмом, кишечными расстройствами и диареей [1285].

Целианическая болезнь является генетическим дефектом, при котором чувствительность к клейковине приводит к нарушению всасывания в кишечнике [1323]. Если подобрать диету без клейковины, патологические симптомы исчезают [1059].

У некоторых людей, мутантных по G6PD, при употреблении в пищу бобов развивается гемолитическая анемия [1079]. Для больных фавизмом характерно снижение уровня α-глутаровой кислоты, выделяющейся с мочой [1031], это может быть связано с биологическим превращением токсического вещества, содержащегося в бобах. Генетический механизм, лежащий в основе выделения глутаровой кислоты, в настоящее время неизвестен. Вообще говоря, гетерозиготность по аутосомно-рецессивным генам, которые в гомозиготном состоянии вызывают наследственные метаболические заболевания, заслуживают большего внимания исследователей. Такая гетерозиготность является источником генетических вариантов, различающихся по чувствительности к действию факторов среды. Отрывочные сведения, имеющиеся в настоящее время, позволяют предполагать, что чувствительность к различным факторам распространена значительно сильнее,

4. Действие генов 119

чем считалось ранее. По фенотипу гомозигот и природе ферментативных дефектов можно предсказывать, каким образом заболевание должно проявляться у гетерозигот. Характер питания в западных странах (высокое содержание жиров в пище), по мнению большинства специалистов, способствует развитию ишемической болезни сердца [1247]. Обнаружено несколько аутосомных доминантных генов, контролирующих метаболизм липидов; они обусловливают семейную гиперхолестеринемию, семейную триглицеридемию и семейную комбинированную гиперлипидемию [1109] (разд. 3.8.14.2). Представляется маловероятным, что частота семейной гиперхолестеринемии (приблизительно 1/500 в США) обусловлена характером пищи, поскольку уровни холестерина очень близки у японцев, больных гиперхолестеринемией, у европейцев и африканцев [1206], тогда как средний уровень холестерина в популяциях Японии значительно ниже. Гены, ответственные за наследственную гипертриглицеридемию и комбинированную гиперлипидемию, вообще не экспрессируются до 25 лет [1109]. Возможно, характер питания увеличивает частоту этих заболеваний. Влиянию диеты могут быть подвержены и еще неидентифицированные гены (полигены), которые участвуют в определении уровня холестерина, но не являются родственными главным генам. В настоящее время вопрос о влиянии диеты на работу всех этих генов интенсивно изучается.

Ген гемохроматоза характерен для ряда популяций в Европе [1010]. Гомозиготы, способные быстро поглощать железо, составляют приблизительно 1/500 популяции, однако симптомы заболевания развиваются лишь у немногих гомозигот. Дети и женщины часто страдают от недостатка железа в организме. В Швеции практикуется добавление соединений железа в хлеб. Это должно приводить к более частому и более раннему проявлению гемохроматоза. Вероятно, добавление железа в хлеб не наносит вреда гетерозиготам, которые весьма многочисленны и составляют 10% популяции. Страдать в этих условиях будут больные тяжелой формой талассемии, у которых и без того повышен уровень железа. Поэтому в ряде стран такая тактика не получила распространения, хотя, несомненно, она позволила бы снизить число случаев недостаточности железа. Эти соображения показывают, насколько сложные общественные проблемы могут быть связаны с генетической гетерогенностью популяции. То, что полезно для одной части популяции, для другой оказывается вредно. Более того, соотношение вреда и пользы не всегда поддается точной научной оценке. Вероятно, с развитием наших знаний о генетической вариабельности мы будем сталкиваться со все новыми подобными проблемами.

4.6. Механизм аутосомной доминантности

Аутосомно-рецессивные заболевания, как правило, обусловлены дефектами ферментов, которые возникают вследствие мутаций в соответствующих генах. Часто удается показать, что фермент имеет аномальную структуру или нестабилен (разд. 4.4.2) [1069]. У гетерозигот ферментативная активность составляет обычно 50% нормы, но это не приводит к заболеванию, поскольку такая активность фермента является достаточной для нормальной жизнедеятельности. Напротив, при аутосомно-доминантном наследовании гетерозиготы имеют все клинические признаки заболевания, т. е. присутствие лишь одной копии мутантного гена вызывает нарушение нормальной функции.

Механизмы аутосомно-доминантных наследственных болезней значительно более разнообразны, чем механизмы аутосомно-рецессивных заболеваний. Высказывалось предположение, что аутосомно-доминантные заболевания вызываются мутациями в генах структурных белков [132]. Это предположение выглядит еще более правдоподобным, если к числу структурных белков относить мембранные белки и рецепторы. Однако во многих случаях механизмы аутосомно-доминантных заболеваний остаются невыясненными. Мы не знаем, например, каким образом аномалия одного-единственного гена способна приводить к столь многочисленным проявлениям, как при нейрофиброматозе и туберозном скле-

120 4. Действие генов

розе. Нет никаких сведений и о механизмах патогенеза при таких заболеваниях, как хорея Гентингтона и полицистоз почек. Чтобы выяснить механизмы этих болезней, необходимы более глубокие знания генетики развития человека.

4.6.1. Аномальная агрегация субъединиц

Дисфибриногенемии (13480) [1112]. Для этой группы заболеваний характерно, что все симптомы проявляются у гетерозигот. Если такие гетерозиготы несут мутацию в гене, кодирующем белок с субъединичной структурой, то в организме будет присутствовать смесь мутантных и немутантных молекул. Вследствие этого нарушается формирование белкового агрегата (рис. 4.70). При некоторых формах дисфибриногенемии мутации, изменяющие молекулы фибриногена, приводят к кровотечениям. У определенных мутантных форм фибриноге-

Рис. 4.70. Схема агрегации полипептидных цепей у здоровых людей и у мутантов -гетерозигот. А. Индивид гомозиготен, синтезируются только нормальные полипептиды. Б. Индивид гетерозиготен, нормальные и аномальные полипептиды синтезируются в равных количествах; сборка белка нарушена.

на измененным оказывается участок, ответственный за агрегацию с образованием фибрина. Например, при мутации Detroit имеется аминокислотная замена в сайте, ответственном за превращение фибриногена в фибрин, она обусловливает сильные кровотечения у больных с таким генотипом [1007]. Хотя при большинстве аномалий фибриногена количество этого белка не отличается от нормы, известен случай, когда уровень фибриногена был снижен из-за уменьшения времени жизни молекулы, что, вероятно, связано с ее нестабильностью [1210]. Некоторые генетические аномалии фибриногена считаются причиной тромбозов, однако не известно, какие именно мутации повышают свертываемость крови. Большая часть вариантов фибриногена не связана с клиническими осложнениями. Очевидно, что для выяснения взаимосвязи структуры и функции молекулы фибриногена необходимы дальнейшие исследования аминокислотных замен, характерных для фибриногенемий.

4.6.2. Аномальные субъединицы нарушают функции мультимерных белков

Гемоглобинопатии. Существует целый ряд клинических форм гемоглобинопатии, которые имеют сходные причины возникновения, связанные с субъединичной структурой гемоглобина. Известно, что в состав функционально активной молекулы гемоглобина входят четыре субъединицы, которые кодируются двумя локусами. В связи с этим у гетерозигот образуются гибридные молекулы, которые содержат как нормальные, так и мутантные полипептидные цепи1'. В зависимости от конкретной мутации, у гетерозигот могут наблюдаться различные проявления - метгемоглобинемия, гемолитическая анемия или эритроцитоз (разд. 4.3.2). Высокая степень кооперативных взаимодействий субъединиц в молекуле гемоглобина приводит к тому, что у гетерози-

1) Гибридные молекулы, например, содержащие βS βA, образуются, однако их не удается идентифицировать, используя обычные методы разделения гемоглобинов, такие, как хроматография на колонках или электрофорез

4. Действие генов 121

тот, имеющих одну мутацию в гене Нbα или Hbβ, молекула гемоглобина с одной мутантной субъединицей становится функционально неактивной. Например, аминокислотные замены в участках α- или β-цепей, отвечающих за контакт между четырьмя полипептидами, могут нарушать взаимодействие между генами, необходимое для кислородного обмена. В результате возникает относительный недостаток кислорода в тканях, который компенсируется лишь за счет увеличения числа эритроцитов.

В этих случаях мутации доминантны, поскольку для обеспечения нормальной функции белок должен вступить в контакт с другим белком, который кодируется своим собственным аллелем. Возникающая в результате мутации аминокислотная замена располагается в сайте, ответственном за это взаимодействие. Аналогичные в функциональном отношении аминокислотные замены вполне могут быть причиной других доминантных мутаций.

4.6.3. Аномальное ингибирование ферментов по типу обратной связи и структурно аномальные ферменты

Порфирия (17600) [1282; 1217] - понижение ферментативной активности. Установлено, что различные варианты доминантной порфирии (табл. 4.25) являются следствием ферментативных дефектов на определенных этапах биосинтеза гема или порфирина. В каждом конкретном случае ферментативная активность составляла около 50% нормальной, как у обычных гетерозигот.

Таблица 4.25. Дефекты ферментов при наследственной доминантной порфирии

Заболевание

Дефектный фермент

Острая перемежающаяся порфирия

Порфобилиноген-дезаминаза

Вариегатная порфирия

Протопорфириногеноксидаза

Наследственная копропорфирия

Копропорфириногеноксидаза

Тяжелая кожная порфирия

Уропорфириноген-декарбоксилаза

Протопорфирия

Феррохелатаза

Патофизиология этой группы заболеваний изучена на примере острой перемежающейся порфирии. Многие больные, у которых понижена активность порфобилиноген-дезаминазы, не страдают характерными для порфирии болями в области живота и нейропатией. Появление этих симптомов наблюдается при повышенной активности синтетазы δ-ам