Главная > Книга


4. Действие генов 79

Рис. 4.43. Генетический анализ потомства от брака двойной гетерозиготы по Hbβ (HbβS) и Нbδ (НbδВ2) с нормальным индивидом. Очевидно, что гены β- и δ-цепей расположены на одной хромосоме и тесно сцеплены. Все потомки наследуют либо аномалию βS, либо δВ2. Среди детей не наблюдается нормальных индивидов или сложных гетерозигот, аналогичных родительскому типу. Эти данные согласуются с выводом о тесном сцеплении двух генов.

закодирована в ДНК и необходима для стабилизации мРНК, которая переносит генетическую информацию от ядерных генов к рибосомам, где в результате соединения аминокислот в нужной последовательности происходит синтез глобинов (рис. 4.41).

Полиморфизм ДНК в области глобиновых генов. [972; 1253]. При картировании генов γ-δ-β-кластера с помощью рестрикционного анализа была обнаружена значительная вариабельность последовательности ДНК у различных индивидов (рис. 4.40). Все известные варианты β-глобинового комплекса генов возникли в результате одиночных нуклеотидных замен и обозначаются как присутствующие ( + ) или отсутствующие ( —). Среди 17 полиморфных сайтов в β-кластере 12 локализованы во фланкирующих последовательностях, 3 внутри интронов, 1 внутри псевдогена и только 1 внутри кодирующей части гена р-глобина (синонимическая замена). Такое расположение закономерно, поскольку мутации в кодирующих областях скорее могут вызвать нежелательные эффекты. Большая часть ДНК, расположенной между структурными генами, не экспрессируется, поэтому изменения нуклеотидной последовательности в этих районах обычно не имеют функциональных последствий. Различные полиморфные сайты имеют древнее происхождение, поскольку они обнаружены у всех расовых групп (табл. 4.13). Заметим, однако, что некоторые варианты встречаются только у негров, у других расовых групп их нет.

Два случая полиморфизма ДНК в α-глобиновом локусе относятся к гипервариабельным районам, состоящим из различного числа случайно повторенных фрагментов ДНК длиной 36 нуклеотидов (разд. 2.3.3.9).

Специфическое сочетание полиморфных сайтов в генном кластере (или генетическом локусе) называется гаплотипом. Например, расположение пяти сайтов возможного полиморфизма можно записать как + – + – + в направлении от 5' к 3'. Совокупность четырех основных гаплотипов, различающихся между собой минорными вариациями в 5 сайтах гена β-глобина, (табл. 4.14) была названа «остов».

Отличительной чертой вариабельности ДНК в β-глобиновом кластере является неравновесие по сцеплению полиморфных сайтов. Если бы в течение многих поколений происходила свободная рекомбинация, сочетание полиморфных сайтов было бы случайным, а число различных гаплотипов составило 2n, где n - количество возможных сайтов полиморфизма. В действительности обнаруживается лишь несколько гаплоти-

80 4. Действие генов

Таблица 4.13. Частоты сайтов полиморфизма ДНК в β-глобиновом кластере у различных региональных групп (по [972])

Полиморфизмы

Греки

Негры США

Население Юго-Восточной Азии

Taq I (I)1»

1,00

0,88

1,00

Hinc II (2)

0,46

0,10

0,72

Hind III (3)

0,52

0,41

0,27

Hind III (4)

0,30

0,16

0,04

Pvu II (5)

0,27

Hinc II (6)

0,17

0,15

0,19

Hinc II (7)

0,48

0,76

0,27

Rsa I (8)

0,37

0,50

Taq I (9)

0,68

0,53

Hinf I (10)

0,97

0,70

0,98

Rsa I (11)

Hgi A (12)

0,80

0,96

0,44

Ava II (13)

0,80

0,96

0,44

Hpa I (14)

1,00

0,93

Hind III (15)

0,72

0,63

BamH I (16)

0,70

0,90

Rsa I (17)

0,37

0,10

1) Номер в скобках соответствует обозначению сайтов рестрикции на рис. 4.44.

пов. Например, имеет место сильное неравновесие по сцеплению восьми сайтов полиморфизма в 5'-фланкирующей области гена δ-глобина (сайты 1-8 на рис. 4.44), вследствие чего 94% всех хромосом в популяции содержит лишь четыре гаплотипа из всех возможных. Сходным образом, для пяти других полиморфных сайтов, локализованных в гене β-глобина и его 3'-фланкирующей области (сайты 12-17 на рис. 4.44), только четыре гаплотипа на участке длиной 18 т.п.н. характеризуют 90% всех хромосом. При сравнении этих двух кластеров полиморфных сайтов неожиданно оказалось, что их сочетания полностью подчиняются случайному распределению. Проще всего это можно объяснить, предположив, что между кластерами имеется горячая точка рекомбинации - участок, в котором рекомбинация происходит с высокой частотой. Такая рекомбинация уже продемонстрирована в одной из семей. Точные границы этой области с высокой частотой рекомбинации пока не определены.

Варианты гемоглобинов.Варианты гемоглобина возникают вследствие различных мутационных событий в конкретном глобиновом гене. Чаще всего разные варианты гемоглобина отличаются друг от друга одной аминокислотой в глобиновой цепи. Описано около 350 таких единичных замен [119]. Эти аминокислотные замены вызываются замещением всего одного нуклеотида в триплете. Например, при замене GUA и GAA смысл кодона меняется и место валина в глобиновой цепи занимает глутаминовая кислота (рис. 4.45). Если новая аминокислота отличается от исходной по заряду, измененный гемоглобин будет аномальным по электрофоретическим свойствам. Мутации, которые не влияют на заряд полипептида, обычно удается обнаружить

Таблица 4.14. Варианты последовательности нуклеотидов гена β-глобина и их частоты [972; 1253]

Обозначения

Второй кодон

Второй интрон

Частота (%)

Позиция

Население — Средиземноморья

Негры США

Население Юго-Восточной Азии

16

74

81

666

1

САС

С

G

С

Т

53

79

18

2

САС

С

Т

С

Т

28

12

35

3-Монголоиды и негры

CAT 1)

G

Т

С

С

9

47

3

CAT1)

G

Т

Т

С

19

1) Мутация, которая не изменяет смысла триплета.

4 Действие генов 81

Рис. 4.44. Полиморфизм сайтов узнавания рестрикционных эндонуклеаз в генах Нbβ (вверху) и Нbα (внизу). Номерами обозначены сайты рестрикции различных ферментов. HVR-гипервариабельные районы (минисателлиты) (таблица 4.14).

только в том случае, если они существенно нарушают функционирование гемоглобина и приводят к болезни. Большинство мутаций гемоглобина независимо от того, меняют они заряд молекулы или нет, не влияют на функции гемоглобина и не приводят к патологии. Как правило, аминокислотные замены в участках полипептидной цепи, которые в молекуле гемоглобина обращены наружу, оказывают меньшее воздей-

Рис. 4.45. Полиморфизм кодонов. Обычно 67-й аминокислотой в цепи β-глобина является валин. Гемоглобин Bristol и гемоглобин Milwaukee возникли в результате различных мутаций, в одном случае валин заменен на глутаминовую кислоту (Hb Bristol), в другом - на аспаргиновую кислоту (Hb Milwaukee). Триплеты, кодирующие валин, показаны в нижней части рисунка Мутация, приводящая к замещению валина на аспаргиновую кислоту, могла быть только заменой GUU на GUG, а замещение валина на глутаминовую кислоту - только заменой GUA на GUG. Следовательно, исходные индивиды, у которых произошли указанные мутации, различались по 67-му кодону валина β-цепи глобина.

ствие на функцию, чем замены аминокислот во внутренних частях цепей или в участках присоединения тема. Замены, нарушающие нормальную спиральную структуру цепи, часто вызывают нестабильность гемоглобина. Замены аминокислот в участках, которыми субъединицы контактируют друг с другом, влияют на сродство к кислороду [1320]. Большинство гемоглобиновых вариантов-редки. Лишь немногие, например гемоглобины HbS, HbC иНbЕ, встречаются чаще других (разд. 6.2.1.6).

В кодирующей области гена полиморфизм тоже регистрируется. Известно, что генетический код - вырожденный (табл. 2.12), т. е. несколько триплетов кодируют одну и ту же аминокислоту (см. рис. 4.45). Анализ двух различных замен в 67-м положении цепи β-глобина (рис. 4.45) показал, что два индивида, у которых произошли мутации, и появились новые формы гемоглобина, должны были различаться по исходным триплетам, кодирующим валин в 67-м положении (рис. 4.45). Таким образом, у разных индивидов различные кодоны могут кодировать одну и ту же аминокислоту.

Клиническое значение вариантов гемоглобина. Нарушение функций гемоглобина ведет к возникновению различных заболеваний. Существуют четыре основных типа болезней гемоглобина: 1) гемолитические анемии, вызванные нестабильностью гемоглобинов; 2) метгемоглобинемии, обусловлен-

82 4. Действие генов

ные ускоренным окислением гемоглобина; 3) эритроцитоз, вызванный нарушением сродства гемоглобина к кислороду и 4) серповидноклеточные нарушения как следствие повреждений клеточных мембран гемоглобином S. Во всех случаях, кроме серповидноклеточных нарушений, гетерозиготы по аномальным гемоглобинам страдают различными заболеваниями, т. е. мутации ведут себя как аутосомно-доминантные.

Нестабильные гемоглобины [31; 1335-1357]. Описано свыше 100 нестабильных гемоглобинов. В большинстве случаев мутация затрагивает β-цепь. У многих нестабильных гемоглобинов в полипептидной цепи обнаруживаются аминокислотные замены или делеции в участках связывания гема. Клинические проявления варьируют от едва заметной нестабильности, практически не имеющей клинических последствий, до выраженной нестабильности, при которой происходит интенсивное разрушение эритроцитов. В некоторых случаях гемолиз усиливается при лечении сопутствующих заболеваний сульфониламидами. Нестабильность этих гемоглобинов часто обусловлена преждевременной диссоциацией тема и глобиновой цепи. Такие лишенные гема молекулы глобина преципитуруют внутри клетки, образуя так называемые тельца Хейнца, нарушающие функционирование клеточных мембран. В селезенке тельца Хейнца могут быть удалены из эритроцитов без их разрушения. В конечном итоге такие эритроциты преждевременно уничтожаются ретикуло-эндотелиальной системой. При некоторых формах нестабильности гемоглобина сильный гемолиз удается смягчить удалением селезенки.

Точный диагноз нестабильности гемоглобина может быть затруднен, особенно если не наблюдается изменений электрофоретической подвижности. В этом случае необходимо выделение преципитированных глобиновых цепей для дальнейшего анализа в специализированных лабораториях. Нестабильные гемоглобины являются причиной врожденных несфероцитарных гемолитических анемий. Такие гемоглобины могут возникать в результате новых мутаций.

Метгемоглобинемия, обусловленная гемоглобином М [31]. Гемоглобин М интересен с исторической точки зрения, так как это первая доминантная гемоглобинопатия, выявленная в 1948 году в семье с врожденным цианозом [1130]. Любопытно, что рецессивная недостаточность метгемоглобин-редуктазы, которая также приводит к метгемоглобинемии, была первым изученным дефектом фермента у человека [1100]. Таким образом, метгемоглобинемия может быть вызвана как доминантной мутацией самого глобина, так и рецессивно наследуемой недостаточностью соответствующего фермента.



Скачать документ

Похожие документы:

  1. БИБЛИОГРАФИЯ = Фогель Ф Мотульски А Генетика человека В 3-х т Т 3 Пер с англ – М Мир 1990 – 366 с Фогель Ф Мотульски А Генетика человека В 3-х т Т 3 Пер с англ – М Мир 1990 – 366 с

    Книга
    ... 294 336 378 420 ... Мира, 93. ЭЛЕКТРОННОЕ ОГЛАВЛЕНИЕ БИБЛИОГРАФИЯ = Фогель Ф., Мотульски А. Генетикачеловека: В 3-х т. Т. 3: Пер. с англ. – М.: Мир, 1990. – 366 с. 1 Фогель Ф., Мотульски А. Генетикачеловека: В 3-х т. Т. 3: Пер. с англ. – М.: Мир, 1990 ...
  2. «ОПАСНОЕ ЗНАНИЕ» В «ОБЩЕСТВЕ РИСКА» (век генетики и биотехнологии)

    Документ
    ... Альтерпрес,2002. 284 с. Фогель Ф., Мотульски А. Генетикачеловека: В 3-х М.: Мир, 1990. –378 с. Форрестер Дж. Мировая динамика Пер. с англ. Под ред. Д.М.Гвишиани ... будущего: роль этики 373 КРАТКАЯ БИБЛИОГРАФИЯ 389 1 Кальниш В.В., Ена А.И. ...
  3. Проект ingsat

    Документ
    ... Генетикачеловека. В 3-х т. Т. 1. Пер. с англ. М., Мир, 1989. 312 с.djvu Фогель Ф., Мотульски А. Генетикачеловека. В 3-х т. Т. 2. Пер. с англ. М., Мир, 1990. 378 с.djvu Фогель Ф., Мотульски А. Генетикачеловека. В 3-х т. Т. 3. Пер. с англ. М., Мир ...

Другие похожие документы..