textarchive.ru

Главная > Книга


2 После инъекции нормальной плазмы активность фермента уменьшается в два раза в течение 12 часов Таким образом, для проведения операции достаточно одной инъекции

При первых попытках лечения в качестве источника фермента использовали плазму здорового человека, но вскоре стало очевидно, что очищенные препараты фермента обладают явными преимуществами Как показано на рис 4 29, необходимый уровень фермента поддерживается достаточно долго после инъекции и нормализует длительность релаксации мышц

Ферментная терапия других наследственных заболеваний пока не вошла в каждодневную врачебную практику, хотя предварительные исследования оказались довольно успешными, например в случае болезни Гоше, при которой внутривенно вводили недостающую глюкоцереброзидазу (23080, [1056]) Как правило, заместительная терапия при заболеваниях, вызванных ферментной недостаточностью, требуется в течение всей жизни В связи с этим возникают следующие проблемы

4 Действие генов 63

Рис. 4.29. Влияние инъекций псевдохолинэстеразы (препарат обогащен в 1300 раз) на продолжительность остановки дыхания и активность этого фермента по отношению к двум субстратам: бензоилхолину и сукцинилдихолину На рисунке представлены результаты обследования трех индивидов с атипичными ферментами до лечения (I) и через десять минут после инъекции (II). После инъекции активность фермента возрастает. Это ведет к уменьшению времени остановки дыхания [196]. Высота белых и черных столбиков отражает изменения в активности.

а) фермент удаляется из организма довольно быстро, необходимо постоянное поддержание его уровня;

б) если вводимый фермент будет воспринят иммунной системой как чужеродный белок, антитела сделают инъецируемый материал биологически неэффективным.

Существуют различные способы преодоления подобных препятствий. Для получения ферментов, которые синтезируются в клетках человека и потому являются наиболее предпочтительными для терапии, необходимы очень большие объемы клеточных культур. Источником ферментов может служить также плацентарный материал. Ферментативный дефект при мукополисахаридозе типа Хурлера (разд. 4.2.2.3) удается временно компенсировать переливанием лейкоцитов [1168], а при болезни Хантера пациентам имплантируют культивированные in vitro фибробласты близких родственников [1052]. В обоих случаях достигается временное снижение количества накопленного метаболита. Недавние достижения в этой области подробно обсуждаются в других обзорах [1057; 1058]. Если фермент вводить в составе полупроницаемых микрокапсул, доступ к нему возможных антител будет затруднен, в то время как субстрат, молекулы которого обладают обычно гораздо меньшей молекулярной массой, сможет проникнуть внутрь капсулы [983].

Для ферментов, поглощаемых клетками, таких, как ферменты лизосом, которые участвуют в катаболизме гликозаминогликана (разд. 4.2.2.3), можно применять внутривенное введение без использования капсул. В заключение отметим, что заместительная терапия при заболеваниях, вызванных дефектами ферментов, не всегда возможна и эффективна. Более плодотворным нам представляется подход, который подразумевает воздействие на метаболические последствия ферментативных дефектов.

Изменение факторов внешней среды удаление метаболита перед блокированным этапом. Метаболит, являющийся субстратом дефектного фермента и накапливающийся перед блокированным этапом метаболического пути, достаточно просто удалить, если он не синтезируется в организме, а поступает с пищей. Мы уже говорили об этом в случае фенилкетонурии. В качестве другого примера можно привести галактоземию, которая возникает из-за недостаточности одного из трех ферментов, превращающих галактозу в глюкозу. При этом заболевании удалить накапливающийся субстрат проще, поскольку галактоза содержится почти исключительно в молоке. Проблема усложняется, если вредный метаболит нельзя удалить, не нарушив тем самым нормальной функции организма.

В некоторых случаях субстрат дефектного фермента в норме образуется непосредственно в организме. В качестве примера можно опять привести мукополисахариды: они постоянно синтезируются и нужны для многих структурных элементов организма. В такой ситуации небольшое снижение синтеза может замедлить развитие заболевания, а иногда даже помочь

64 4. Действие генов

организму справиться с ним благодаря использованию остаточной активности фермента или альтернативного метаболического пути. Описаны случаи, когда нарушение ферментативной активности фенотипически проявляется не в накоплении метаболита перед блокированным этапом, а в отсутствии метаболита после него.

Изменение факторов внешней среды: замещение метаболита после блокированного этапа. Терапия такого типа широко применяется при нарушениях синтеза гормонов. Этой теме посвящено несколько недавних обзоров [171; 1288; 1243]. Упомянем также болезни накопления гликогена (типы I и III).

В этом случае большая часть клинических симптомов обусловлена не собственно накоплением гликогена, а невозможностью его расщепления до глюкозы, что ведет к хронической гипогликемии. Лечение внутривенными инъекциями глюкозы столкнулось бы с непреодолимыми трудностями и, кроме того, привело бы к еще большему накоплению гликогена. Поэтому было предложено хирургическое вмешательство с целью формирования пути, позволяющего крови миновать печень; в результате поступающая из кишечника кровь содержит глюкозу в достаточной концентрации. Создание шунта между портальной и нижней полой венами позволяет большей части крови миновать печень и транспортировать глюкозу непосредственно к сердечной мышце и к другим органам. После этой операции в состоянии больных наблюдается явное улучшение [1131].

Другим примером может служить оротовая ацидурия, описанная в разд. 4.2.2.4. Избыток оротовой кислоты сам по себе не вызывает заметных вредных последствий, однако, недостаток уридинсодержащих соединений приводит к нарушению синтеза нуклеиновых кислот, что влечет за собой мегалобластную анемию и, кроме того, серьезную задержку роста. Добавлением уридина к пище удается восполнить недостаток метаболита и предотвратить проявление клинических симптомов заболевания.

Удаление метаболита, предшествующего блокированному этапу, и добавление метаболита, следующего за блоком. При заболеваниях, связанных с накоплением гликогена, повышение концентрации глюкозы (которая образуется в блокированной реакции благодаря тому, что кровь частично минует печень) приводит одновременно к уменьшению накопления гликогена. При других болезнях клинические симптомы обусловлены обоими механизмами, что приводит к усложнению терапии. Примером может служить гомоцистинурия [23620], причиной которой является нарушение цистатионин - синтазы (рис. 4.30). Гомоцистеин образуется из метионина, поступающего с пищей. Поэтому необходимо уменьшить количество потребляемого метионина. Но поскольку метионин, как и фенилаланин, принадлежит к числу незаменимых аминокислот, его нельзя полностью исключить. Важно также, что в нормальных условиях из метионина образуется цистеин (рис. 4.30). Для гомоцистинурии характерно большое число симптомов. Многие из них вызваны недостатком цистеина; поэтому диета включает повышенное количество цистеина. При другом типе гомоцистинурии помогают терапевтические дозы витамина В6, который является коферментом цистатионин - синтазы.

Лечение путем устранения побочных эффектов метаболических заболеваний. В настоящее время большинство наследственных болезней, поддающихся лечению, лечат именно этим способом. При таком подходе не требуется точного знания патофизиологических и генетических механизмов. Например, мы почти ничего не знаем о биохимических причинах полидактилии, «заячьей губы» или «волчьей пасти». Но это не мешает успешно оперировать таких больных. Очень мало известно о биохимических основах психических болезней (разд. 8.2.3.6). Тем не менее для лечения больных, страдающих шизофренией или эмоциональными расстройствами, оказалось возможным подобрать чисто эмпирическим путем вполне адекватный способ медикаментозного лечения. Во всех областях медицины большая часть методов

4. Действие генов 65

Рис. 4.30. Образование цистеина из метионина. При гомоцистинурии цистатионин-синтаза неактивна. Это ведет к увеличению количества гомоцистеина и гомоцистина с одной стороны, и к недостатку цистеина с другой.

лечения (включая успешные) основана на эмпирических выводах независимо от того, каким в действительности является вклад генетической компоненты в развитие заболевания. В настоящее время наши возможности лечения наследственных болезней не очень велики [1045]. Впрочем, этот вывод можно отнести к большинству заболеваний.

Главная цель медико-биологических исследований - терапевтическое вмешательство, основанное на детальных знаниях патофизиологических механизмов. В качестве примера приведем группу адреногенитальных синдромов, обусловленных дефектами ферментов, участвующих в синтезе стероидных гормонов надпочечников. Установлено, что при нарушении синтеза кортизола (17-оксикортикостерона) блокирована нормальная обратная связь, подавляющая образование АКТГ в гипофизе, который стимулирует образование в большом количестве 17-кетостероидов из 17-оксипрогестерона. Кетостероиды в свою очередь стимулируют развитие половых признаков и ведут к маскулинизации больных женщин. Добавление кортизола восстанавливает цикл обратной связи, снижается образование АКТГ и, вследствие этого 17-кетостероидов, что предотвращает маскулинизацию (рис. 4.31). Диета при болезнях метаболизма и общий генотрофический принцип. При многих болезнях метаболизма фенотипических последствий ферментативного дефекта можно избежать, если соответствующим образом изменить диету. Только в силу редкости подобных состояний их относят к патологии: если бы подобные ферментативные нарушения обнаруживались у большей части населения, мы изменили бы соответственно свои привычки в еде, и то, что сейчас считается дефектом, рассматривалось бы как норма. Примером может служить сниженное всасывание лактозы, содержащейся в молоке, характерное для большинства лиц восточного происхождения, негров и многих европейцев. Потребление больших количеств молока и молочных продуктов вызывает у таких дефектных по лактазе больных метеоризм и чрезмерно повышенную перистальтику. У большинства людей, происходящих с северо-запада Европы, такие проблемы не возникают, поскольку уровень лактазы у них достаточно высок (разд. 7.3.1; [1924; 1922]).

В разд. 4.2.2.5 были описаны патологические состояния, вызванные нарушениями всасывания, переработки и утилизации предшественников коферментов (витаминов). Эти болезни можно лечить необычно высокими дозами конкретных витаминов. Однако с эволюционной точки зрения даже нормальная потребность в витаминах может рассматриваться как множественная

66 4 Действие генов

Рис. 4.31.А. Механизм отрицательной обратной связи между гипофизом и корой надпочечников. Кора надпочечников стимулируется гипофизарным гормоном АКТГ (АСТН), конечный продукт синтеза кортикостеронов - кортизол - ингибирует образование АКТГ, в то же время гонады стимулируются гормоном ФСГ (FSH) до тех пор, пока продуцируемые ими андрогены (или эстрогены) не ингибируют образование ФСГ Б. При адреногенитальном синдроме образование кортизола ингибируется вследствие генетического дефекта. Это оказывает двоякое воздействие на гипофиз. Образование АКТГ не ингибируется. Аномально высокое содержание АКТГ ведет к образованию избытка предшественников кортизола, которые подавляют образование ФСГ из-за их химического сходства с андрогенами. В результате происходит маскулинизация женщин. Введение кортизола восстанавливает нормальную обратную связь.

генетически обусловленная недостаточность, поскольку и Neurosporacrassa, и Е coliспособны синтезировать практически все витамины. L-аскорбиновая кислота (витамин С) играет роль мощного восстановителя в метаболизме млекопитающих и синтезируется почти всеми видами, за исключением человека, высших приматов и морских свинок Люди нуждаются в постоянном «лечении с помощью замещения», которое, к счастью, обеспечивается нормальным питанием Однако в исключительных ситуациях, например, в дальних плаваниях прошлых столетии, когда пища не содержала достаточного количества витамина С, развивалась цинга.

Другие метаболические пути, утраченные в ходе эволюции,-это пути синтеза так называемых, незаменимых аминокислот Для некоторых бактерий и грибов эти незаменимые для нас аминокислоты таковыми вовсе не являются, а могут синтезироваться из простых источников азота, таких как аммиак

До сих пор мы рассматривали диетическое лечение в основном редких, наслед-

4. Действие генов 67

ственных вариантов с ярко выраженными эффектами. Однако даже при простом измерении концентрации фенилаланина в сыворотке, кроме крайних, классических случаев ФКУ, обнаруживаются случаи легкой гиперфенилаланинемии. Для поддержания «нормального» в обычном понимании этого слова развития таким людям не нужно придерживаться специальной диеты. Однако имеются данные, указывающие на несколько повышенную подверженность болезням гетерозигот, у которых снижена активность фенилаланингидроксилазы. Если это подтвердится, можно будет сказать, что такая чувствительность зависит от количества избыточного фенилаланина, остающегося после удовлетворения нужд синтеза белка.

В разд. 6.1.2 мы обсудим генетический полиморфизм. Установлено, что треть всех находящихся в крови человека ферментов встречается в различных молекулярных формах, часто с неодинаковой активностью. Это означает, что метаболические пути слегка отличаются у разных индивидов (за исключением однояйцевых близнецов), т.е. человек «биохимически индивидуален» [225]. Одна из особенностей такой индивидуальности заключается в том, что для оптимального развития пищевые потребности разных людей могут слегка отличаться. Этот «генотрофический принцип» является частью взаимной адаптации индивида, его конкретной генетической конституции и окружающей его среды.

4.2.2.10. Необнаруженные дефекты ферментов

Сколько ферментов у человека и какие дефекты ферментов известны? Некоторые метаболические пути пока еще не выяснены. Поэтому никто не знает точного числа ферментов у человека. Согласно приблизительным оценкам, оно достигает по меньшей мере 10 000. Примерно для 200 ферментов, или для 2%, известны дефекты. Как быть с остальными 98%?

Во-первых, очевидно, что имеется большое количество наследственных заболеваний, которые, судя по всему, вызваны именно дефектами ферментов, но это пока не подтверждено с помощью соответствующих методик. Большинство аутосомнорецессивных заболеваний, перечисленных в каталоге Мак-Кьюсика, могут принадлежать к этой группе [133].

Какие дефекты ферментов неизвестны! Рис. 4.32 иллюстрирует нашу попытку сравнить основную группу метаболических путей [120], для которой известны многие дефекты ферментов, с другими группами, для которых известны лишь отдельные нарушения. Хорошо изучены дефекты ферментов:

а) катаболических путей углеводов (например, нарушения гликолиза при наследственной гемолитической анемии);

б) катаболических путей некоторых аминокислот (например, фенилкетонурия);

в) катаболических путей деградации строительного материала клеток и внутриклеточного материала в лизосомах (или, например, мукополисахаридозы);

г) катаболических путей детоксификации и выделения внутренних метаболитов (например, аргининемия);

д) некоторые конечные реакции на вспомогательных ответвлениях пути метаболизма нуклеиновых кислот (например, недостаточность по гипоксантин-гуанин—фосфорибозилтрансферазе);

е) анаболических путей синтеза биомолекул, необходимых для специальных регуляторных функций (например, дефекты образования тиреоидных гормонов);

ж) некоторых путей трансмембранного транспорта (например, цистинурия);

з) некоторых ферментов репарации ДНК (например, пигментная ксеродерма; разд. 5.1.6.3);

и) некоторых метаболических путей, связанных с потреблением и утилизацией предшественников коферментов (например, рахит, резистентный к витамину D).

Мы практически ничего не знаем о дефектах:

а) ферментов, связанных с процессами митоза и мейоза;

б) ферментов, необходимых для синтеза ДНК или РНК, за исключением нескольких ферментов, участвующих в репарации;

68 4 Действие генов

Рис. 4.32. Основные катаболические (темные стрелки) и анаболические (светлые стрелки) пути Большинство дефектов ферментов у человека, за исключением некоторых дефектов синтеза белка сыворотки, затрагивают катаболические пути [120]

в) ферментов, участвующих в биосинтезе белков;

г) систем запасания энергии, в особенности системы цитохромов;

д) ферментов, участвующих в синтезе веществ, используемых как нейромедиаторы в центральной и периферической нервных системах;

е) анаболических путей синтеза многих аминокислот, жиров и липидов;

ж) анаболических ферментов синтеза компонентов тканей, таких как сфинголипиды, муколипиды и мукополисахариды;

з) цикла трикарбоновых кислот, ферменты которого выполняют как катаболические, так и анаболические функции.

Короче говоря, наши знания ферментных дефектов у человека не только не полны, но и крайне односторонни. Чаще всего такие нарушения затрагивают собственные, так называемые «домашние» функции клетки. При этом для большинства главных анаболических функций никаких дефектов ферментов до сих пор не найдено Картина выглядит более полной для катаболических путей и для биосинтеза некоторых специализированных молекул, таких как гормоны.

Почему нам так мало известно о дефектах ферментов, участвующих в основных процессах образования структуры клеток? Действительно, почему? Отчасти это объясняется методическими трудностями. Легко получить клетки крови, но не печени и тем более мозга. Проблема доступности материала актуальна и для анализа генетического полиморфизма Большинство известных в настоящее время примеров полиморфизма касается именно различных компонентов крови. Если бы нашим органом мышления и чувств была кровь, а не мозг, наше невежество в области генетики поведения было бы давно преодолено (разд 6 2)

И все-таки вряд ли односторонность знаний в этой области можно полностью объяснить методическими трудностями

4. Действие генов 69

Скорее всего нарушения ферментов, которые участвуют в построении главных структур клетки, приводят к летальным эффектам. Например, трудно представить себе, что можно жить почти при полном отсутствии активности ДНК-полимеразы. Ведь такое нарушение вызвало бы снижение скорости или полное подавление репликации ДНК, а следовательно, и деления клетки. Это верно также для цикла трикарбоновых кислот или для синтеза жизненно важных метаболитов.

В большинстве случаев для сохранения нормальной функции достаточно 50% нормальной активности фермента. Об этом свидетельствуют данные, полученные для гетерозигот с ферментативными нарушениями. Для выявления таких гетерозигот необходимы крупномасштабные популяционные исследования. Следует учесть, однако, что для многих ферментов характерна выраженная межиндивидуальная вариабельность активности, которая затрудняет, а иногда просто сводит на нет попытки обнаружения гетерозигот. Эта вариабельность и в особенности тот факт, что 50%-ная активность у гетерозигот обеспечивает выживание в обычных условиях, показывают, что метаболизм обладает замечательным запасом прочности, позволяющим организму противостоять отклонениям. Важно и то, что многие функции в организме обеспечиваются различными метаболическими путями. Поэтому некоторые мутации, даже в гомозиготном состоянии, могут не приводить к врожденным нарушениям [820].

Вывод о том, что рецессивные летальные мутации, действующие на основные метаболические пути, возможны, имеет для популяционной генетики большое значение. Более того, нет никаких причин полагать, что мутации по таким генам, более редки, чем мутации, которые приводят к известным ферментативным дефектам. Логично предположить, что все такие мутации возникают. Иногда они оказываются в гомозиготном состоянии, что обусловливает гибель зиготы. Можно было бы ожидать, что в условиях, которые вообще способствуют возникновению гомозигот, т.е. при близкородственных браках, число выкидышей должно возрастать (разд. 6.3.1). Однако это предположение не подтверждается экспериментально. Возможно, большинство таких зигот погибает на столь ранней стадии развития, что это проходит незамеченным.

4.2.2.11. Некоторые общие выводы по анализу ферментативных нарушений у человека

Обнаружение дефектов ферментов. Анализ ферментативных нарушений у человека позволяет сделать несколько выводов. Чтобы дефект фермента можно было обнаружить, он должен проявляться в клетках крови или в культуре фибробластов. Более того, этот дефект должен приводить к четким клиническим симптомам или к изменениям, выявляемым при обычном обследовании (например, выделение необычных метаболитов с мочой). Врожденное нарушение с неспецифическими симптомами, которое не сопровождается легко регистрируемыми биохимическими отклонениями, не может быть обнаружено.

Значение ферментативных дефектов для прояснения метаболических путей. Не сложно обнаружить ферментативное нарушение, если уже известен тот метаболический путь, в котором этот фермент принимает участие. В некоторых случаях, наоборот, анализ ферментативных дефектов проливает свет на неизвестный еще метаболический путь, который трудно исследовать другим способом. Ярким примером могут служить мукополисахаридозы.

Характеристика мутаций, обусловливающих ферментативные нарушения у человека. Известно, что во многих случаях дефектные ферменты у человека сохраняют некоторую остаточную активность. Как правило, мутантный белок бывает изменен качественно. Например, он может превратиться в перекрестно-реагирующий материал (ПРМ), могут измениться его кинетические и другие характеристики. Эти данные свидетельствуют о том, что изменения белков происходят в результате мутаций в структурных генах, поскольку регуляторные мутации приводили бы только к коли-

70 4 Действие генов

чественным изменениям ферментной активности. Внутри каждого генного локуса существует высокая степень генетической гетерогенности, которая дополняет гетерогенность локусов, контролирующих один и тот же метаболический путь.

Тип наследования: гетерозиготы. Дефекты ферментов, как правило, наследуются рецессивно. Гены, детерминирующие эти нарушения, могут быть сцеплены с аутосомами или в некоторых случаях с Х-хромосомой. Активность ферментов у здоровых гетерозигот-носителей обычно вдвое меньше средней для популяции. Отсюда следует, что организм человека может прекрасно функционировать при наличии фермента, работающего в «полсилы». Этот факт указывает на существующие в принципе значительные возможности регуляции метаболических путей. Однако, если метаболический путь перегружен веществом, для утилизации которого требуется дефектный фермент, способность организма перерабатывать избыточный метаболит может быть снижена по сравнению с гомозиготами. Есть данные, свидетельствующие о том, что подобные нарушения не безразличны и для гетерозигот. Возможно, именно онипричина большей предрасположенности гетерозигот к обычным соматическим и психическим заболеваниям. В настоящее время систематические широкомасштабные обследования гетерозигот по рецессивным генам, особенно в среднем и пожилом возрасте, почти не проводятся. Причина состоит в том, что с врожденными дефектами обычно имеют дело педиатры или медицинские генетики с педиатрическим образованием, т.е. специалисты, не заинтересованные в эпидемиологических или популяционных исследованиях. С другой стороны, популяционные генетики, как правило, не вникают в биохимические тонкости.

Тот факт, что почти все дефекты ферментов наследуются как рецессивные признаки, неизбежно заставляет задуматься о биохимической основе доминантных нарушений. Мы обсудим эту проблему в разд. 4.6. Теперь же перейдем к изложению данных о строении и генетике гемоглобинов. Именно эти данные помогли ответить на многие вопросы, связанные с дефектами ферментов, и в какой-то степени прояснили возможные механизмы менделевской доминантности.



Скачать документ

Похожие документы:

  1. БИБЛИОГРАФИЯ = Фогель Ф Мотульски А Генетика человека В 3-х т Т 3 Пер с англ – М Мир 1990 – 366 с Фогель Ф Мотульски А Генетика человека В 3-х т Т 3 Пер с англ – М Мир 1990 – 366 с

    Книга
    ... 294 336 378 420 ... Мира, 93. ЭЛЕКТРОННОЕ ОГЛАВЛЕНИЕ БИБЛИОГРАФИЯ = Фогель Ф., Мотульски А. Генетикачеловека: В 3-х т. Т. 3: Пер. с англ. – М.: Мир, 1990. – 366 с. 1 Фогель Ф., Мотульски А. Генетикачеловека: В 3-х т. Т. 3: Пер. с англ. – М.: Мир, 1990 ...
  2. «ОПАСНОЕ ЗНАНИЕ» В «ОБЩЕСТВЕ РИСКА» (век генетики и биотехнологии)

    Документ
    ... Альтерпрес,2002. 284 с. Фогель Ф., Мотульски А. Генетикачеловека: В 3-х М.: Мир, 1990. –378 с. Форрестер Дж. Мировая динамика Пер. с англ. Под ред. Д.М.Гвишиани ... будущего: роль этики 373 КРАТКАЯ БИБЛИОГРАФИЯ 389 1 Кальниш В.В., Ена А.И. ...
  3. Проект ingsat

    Документ
    ... Генетикачеловека. В 3-х т. Т. 1. Пер. с англ. М., Мир, 1989. 312 с.djvu Фогель Ф., Мотульски А. Генетикачеловека. В 3-х т. Т. 2. Пер. с англ. М., Мир, 1990. 378 с.djvu Фогель Ф., Мотульски А. Генетикачеловека. В 3-х т. Т. 3. Пер. с англ. М., Мир ...

Другие похожие документы..