textarchive.ru

Главная > Документ

1

Смотреть полностью

АВИАЦИОННЫЕ ПРИБОРЫ И СИСТЕМЫ

Оглавление

Введение 3

Глава 1. Технический уровень авиационного изделия 15

1.1. Стандарты авиационной техники 15

1.2. Надежность 23

1.3. Экономичность 29

1.4. Регулярность 30

1.5. Технологичность 31

1.6. Точность 33

1.7. Другие критерии 34

1.8. Оценка технического уровня 34

Глава 2. Гипотезы и законы аэродинамики классификации

летательных аппаратов 37

2.1. Строение атмосферы 37

2.2. Гипотеза сплошности газовой среды 39

2.3. Принцип обращенного движения 42

2.4. Уравнение неразрывности движения потока 44

2.5. Подъемная сила. Теорема Николая Егоровича Жуковского 45

2.6. Кармановские колебания 51

2.7. Принцип аэродинамической интерференции 56

2.8. Гипотеза об отсутствии обратного влияния пограничного слоя

на свободный поток 56

2.9. Принцип аддитивности внешних воздействий на летательный

аппарат 56

2.10. Классификация летательных аппаратов 57

Глава 3. Приоры для измерения скорости и высоты полета 73

3.1. Общие определения 73

3.2. Прибор для измерения индикаторной (приборной) скорости 77

3.3. Тенденции развития приборов для измерения скоростных

параметров 96

3.4. Барометрический высотомер 101

3.5. Манометрический вариометр 108

Глава 4. Система воздушных сигналов 113

4.1. Назначение системы 113

4.2. Датчик температуры торможения 116

4.3. Датчики давления 120

4.4. Коррекция погрешностей восприятия статического давления 142

Глава 5. Измерители малых скоростей 145

5.1. Инвариантный измеритель скорости 147

5.2. Всенаправленный измеритель малой скорости с приемником

давления на вращающейся штанге 154

5.3. Всенаправленный измеритель малой скорости с приемником

давления на лопасти 160

5.4. Всенаправленный измеритель малой скорости с приемником

давления на двухстепенном подвесе 166

Глава 6. Измерители аэродинамических углов 174

6.1. Датчик аэродинамических углов флюгерный 178

6.2. Датчик аэродинамических углов пневматический 192

6.3. Датчик аэродинамических углов совмещенный 209

6.4. Датчик аэродинамических углов сферический 214

6.5. Измеритель аэродинамических углов меточный 216

6.6. Измерители аэродинамических углов электромеханические 222

6.7. Измерители истинных аэродинамических углов 225

ВВЕДЕНИЕ

Думы и мысли о полетах человека уходят в далекое прошлое. Еще в сказках, легендах и песнях люди мечтали о полете, о ковре-самолете, о покорении воздушного пространства [1, 2]. Вот несколько легенд.

Древнегреческая легенда. Дедаль и его сын Икар бежали якобы с острова Крит на искусственных крыльях.

Из истории русских людей. В 906 году князь Олег осадил Царь-град, применив хитрость. Он приказал изготовить из позолоченной бумаги воздушные змеи, придав им вид всадников, и пустил их на осажденный город. Греки в ужасе бежали.

Во времена Ивана IV упоминается некий Никитка. Он построил машину с деревянными крыльями, наподобие птичьих. Его обвинили в связях с Нечистой Силой, отрубили голову, тело отдали на съедение собакам.

Подьячий Крякнутый в 1731 году в Рязани, за полвека раньше братьев Монгольфье (в Париже) соорудил матерчатый воздушный шар, наполнив его горячим дымом и совершил налет. Из Рязани его выгнали.

В научных кругах считается, что впервые возможность полета научно обосновал в 1475 году Леонардо да Винчи (Италия). Он разработал воздушный винт. Но очень долго он не был востребован. Независимо от этого наш соотечественник выдающийся ученый М.В. Ломоносов научно обосновал принцип полета аппаратов тяжелее воздуха. В 1754 году он впервые в мире построил и испытал модель двухвинтового вертолета. Спустя 50 лет академик Я.Д. Захаров поднялся на воздушном шаре. Большие заслуги перед авиацией имеет Д.И Менделеев. В 1887 году на свободном аэростате он лично сам совершил полет для наблюдения солнечного затмения на высоте 3600 метров.

Первый в мире самолет был спроектирован и построен русским ученым и изобретателем Александром Федоровичем Можайским (1825 – 1890 гг.). 3 ноября 1881 года ему была выдана привилегия (патент). Постройка и летные испытания самолета осуществлены в 1882 – 1886 гг., на 18 – 20 лет раньше первых полетов в Америке и в Европе. В 1885 году Можайский на своем самолете взлетел и упал с высоты нескольких метров. Его заслуга в том, что им был разработан и построен полноразмерный самолет, который смог взлететь хоть и на небольшую высоту. Полеты самолетов вплоть до 1920 годов происходили без теории крыла, без аэродинамики винта, без динамики полета. Все это было впереди. В Америке братья У. и О. Райт взлетели только в 1903 году. После появления трудов русских ученых Николая Егоровича Жуковского и Сергея Алексеевича Чаплыгина стали возможны научно обоснованные конструкции самолетов и их полеты. Н.Е. Жуковский (1847 – 1921 гг.) является общепризнанным основоположником аэродинамики и динамики полета самолетов. Россия по праву считает Н.Е. Жуковского "Отцом русской авиации". Он раньше других (Г. Эйфеля и Л. Прандтля) организовал аэродинамическую лабораторию. Построил в 1902 году в МГУ аэродинамическую трубу. В 1904 году под Москвой в Кучино создает первый в мире аэродинамический институт. В 1904 году Н.Е. Жуковский открыл принцип образования подъемной силы крыла, а в 1906 году сформулировал свою теорему о подъемной силе крыла.

В 1918 году Н.Е. Жуковский возглавляет Центральный аэрогидродинамический институт (ЦАГИ), который до ныне является научной базой для разработки современных летательных аппаратов. Очень бурно развивалась авиация в 20 веке и явилась колыбелью космонавтики. Однако идея полета человека к звездам зародилась давно, еще в 19 веке.

Автором первого в мире проекта летательного аппарата с ракетным двигателем, предназначенного для полета человека, был Николай Иванович Кибальчич (1853 – 1881 гг.). Это революционер, народник, член народнической организации "Земля и воля", член подпольной организации "Народная воля". 1 марта 1881 года был убит царь Александр II, взрывом бомбы, изготовленной Н.И. Кибальчичем. За это он 17 марта 1881 года был арестован. Будучи уже в Петропавловской крепости, Кибальчич для создания двигательной силы летательного аппарата предлагает использовать "медленно горящие взрывчатые вещества" в виде свечей из прессованного пороха. Газы, быстро выходящие из двигателя, должны толкать аппарат. С помощью этих же газов предлагалось тормозить при спуске. Перед казнью он пишет: "Сила взрыва освободит человека от земного рабства, и силами взрывов человек когда-нибудь полетит к звездам". 3 апреля 1881 года Н.И. Кибальчич был казнен. Через 37 лет в журнале "Былое" (1918 г.) был опубликован "Проект ракетной машины для летания" Н.И Кибальчича.

Одним из основоположников теории космонавтики является ученый Константин Эдуардович Циолковский (17.09 1857 – 19.09.1935). В 1887 году (год смерти Кибальчича) он опубликовал свой первый научный труд на тему о теории газов. Он разрабатывает управляемый металлический дирижабль, потом металлический аэроплан. В 1897 году он строит впервые в мире аэродинамическую трубу. В 1930 году на основании своих исследований Циолковский доказывает, что винтомоторная авиация должна уступить дорогу реактивной авиации. Он утверждает, что после скорости 1200 км/ч тянущий воздушный винт становится невыгодным. Но главной работой Циолковского считается открытие законов движения тел с переменной массой и создание стройной науки – теории ракетодинамики. За это его считают творцом космонавтики. Вопрос заключается в том, что при движении ракеты ее масса меняется в связи с выгоранием топлива. Ему принадлежит идея создания искусственного спутника Земли, идея полетов к другим планетам.

4 октября 1957 года – полет первого в мире искусственного спутника Земли – начало новой в истории человечества космической эры. Тут рядом стоят три имени: К.Э. Циолковского, С.П. Королева и Ю.А. Гагарина. И это все в России! Первый космический корабль был создан трудом огромного числа коллективов (в том числе УКБП) под руководством Главного конструктора Сергея Павловича Королева (12.01.1907 – 14.01.1966 гг.). Начал он с постройки своего планера К-5. Окончил московское высшее техническое училище, окончил московскую школу летчиков. После знакомства с трудами К.Э Циолковского Королев всецело отдается воплощению его идей в жизнь. Королев сотрудничает с одним из пионеров ракетостроения Ф.А Цандером, они создают группу по изучению реактивного движения (ГИРД). В 1934 году издает свою книгу "Реактивный полет в стратосфере", где главное внимание уделяет жидкостным двигателям.

28 февраля 1940 года состоялся первый полет ракетоплана Королева РП-318. Летчиком был В.П. Федоров.

15 мая 1942 года был испытан истребитель БИ-1 с жидкостно-реактивным двигателем. Пилотировал его Григорий Бахчиванджи. Конструкторами БИ-1 были инженеры А.Я Березняк и А.М. Исаев. Самолет развивал скорость до 900 км/ч. Полет ракетоплана РП‑318 и ракетного самолета БИ-1 начали эру реактивной авиации России.

12 апреля 1961 года на корабле "Восток" Юрий Алексеевич Гагарин (1934 – 1968) впервые в истории человечества совершил полет в космос. Он совершил всего один виток вокруг Земли за 108 минут.

Последнее время характерно широким применением "беспилотников" – летательных аппаратов, управляемых "искусственным" пилотом (электронным пилотом). Иногда их называют "крылатыми ракетами". Впервые такой аппарат в виде беспилотной авиамодели построил во время второй мировой войны один из изобретателей – братьев Райт – Орвилл Райт. Но практическое применение впервые беспилотники нашли в Германии в 1939 году, когда такой аппарат ушел в разведку.

АВИАЦИОННАЯ ПРОМЫШЛЕННОСТЬ

Чтобы управлять любым процессом, его нужно хорошо знать. Авиация относится к такой области техники, которая характеризуется высокими требованиями к безопасности, экономичности, регулярности работы, конкурентоспособности на рынке. Это очень наукоемкая и сложная отрасль промышленности. Инженеры, специалисты, занятые в разработке авиационных приборов, агрегатов и систем обязаны знать основные правила, традиции отрасли. Диктуется это тем, что на рынке ценится качество, оригинальность решения. От инженера в этой отрасли требуется не только знание теории и техники вопроса. Очень ценно правильно и своевременно поставить вопрос и организовать его выполнение. Иногда в быту говорят, что нужны "постановщики" вопроса.

Во все времена ни один ВУЗ не готовил конструкторов. ВУЗ дает базу теоретическую. Учит работать с информацией. Дает ему право заниматься теоретической и практической деятельностью по созданию образцов техники (нужен диплом инженера). В дальнейшем молодой специалист должен приобрести навыки практической деятельности, не прекращая учиться. Прохождение практики, разработка дипломных проектов и обучение в филиале кафедры ИВК в УКБП способствует приобретению навыков в решении технических вопросов. В этом и заключается цель образования филиала кафедры в 1988 году. Мы хотим, чтобы инженеры по специальности 19.03 были "постановщиками". Условия для этого созданы. Дело за студентом! Это способствует сохранению преемственности специалистов, передачи традиций от поколения к поколению. Научный, созидательный труд – труд коллективный. Навыки лучше всего передаются от специалиста к специалисту "из уст в уста", " с глазу в глаза".

Легко идти за хорошим лидером (начальником). Однако в пределе это движение в тупик. Прогресс объективно требует обход лидера учеником. В точке перехода могут быть психологические конфликты между ведомым и ведущим. Но этого бояться не следует. Противоречия нужно разрешать в пользу прогресса.

Каждое поколение специалистов должно приходить в производство со своими идеями и внедрять их. А что сегодня можно принести в авиационную промышленность нового? Информатику, всюду внедрить вычислительную технику, разработать новую технологию программирования авионики; изготовления технической документации с применением ЭВМ, с минимальным применением ручного труда …

Авиационная промышленность – отрасль промышленности, в которой осуществляются разработка, производство, испытания, ремонт и утилизация авиационной техники [4]. Авиационная техника – летательные аппараты, их бортовое оборудование и агрегаты, двигатели, авиационное вооружение, авиационные средства спасения, тренажеры, наземные средства управления воздушным движением (УВД), навигации, посадки и связи, а также средства наземного обслуживания летательных аппаратов.

Авиационная техника двойного назначения – авиационная техника, которая используется как в целях обеспечения потребностей граждан и экономики, так и в интересах обороны и безопасности Российской Федерации.

Летательные аппараты – самолеты, вертолеты, авиационные, авиационно-космические ракеты, аэростаты, дирижабли, планеры, автожиры, дельтапланы и другие летательные аппараты.

Безопасность при разработке, при проведении испытаний и эксплуатации авиационной техники обеспечивается ее разработчиками, эксплуатантами и соответствующими службами аэродромов и аэропортов.

Финансирование развития авиации согласно закону осуществляется путем выделения средств из федерального бюджета и бюджетов субъектов РФ. Допускается приватизация объектов авиационной инфраструктуры. Допускается создание авиационных организаций с участием иностранного капитала при условиях, если доля участия этого капитала составляет менее чем двадцать пять процентов уставного капитала и ее руководитель и входящие в органы управления лица являются гражданами Российской Федерации. Допускается национализация объектов авиационной промышленности.

До перестройки авиационная промышленность в СССР была полностью государственной. Возглавляло ее Министерство авиационной промышленности (МАП), которое подчинялось Совету Министров. Министерство в своем составе имело около 340 предприятий, в том числе 131 серийный завод, 139 ОКБ и институтов. Промышленность могла выпускать до 600 самолетов в год.

Заказчиками продукции были: Военно-воздушные силы (ВВС), Военно-морские силы (ВМФ), Министерство общего машиностроения (космос, ракеты), Министерство гражданской авиации (МГА). Это Генеральные Заказчики.

В настоящее время большинство заводов, КБ и институтов превратились в акционерные. Правительство является заказчиком через Министерство экономики.

Для успешного существования авиационной промышленности необходимо наличие целого ряда условий:

- наличие академических и отраслевых авиационных институтов и лабораторий для разработки теории полета, подготовки кадров и испытаний новой техники;

- наличие авторских коллективов по разработке летательных аппаратов, агрегатов, систем, приборов, двигателей;

- наличие заводов-изготовителей продукции;

- наличие аэродромов и их служб;

- наличие училищ по подготовке пилотов;

- наличие служб управления воздушным движением (УВД);

- наличие ремонтных заводов;

- наличие хорошо организованной, возможно государственной авиационной кампании для эксплуатации самолетов. А в настоящее время бывший Аэрофлот СССР распался на более чем 400 коммерческих компаний.

С 8 января 1998 года действует Закон РФ № 10-ФЗ "О государственном регулировании развития Авиации", который определяет правовые основы государственного регулирования. Цели государственного регулирования:

- содействие экономическому развитию РФ;

- укрепление обороны РФ;

- развитие научно-технического потенциала авиации;

- удовлетворение нужд физических и юридических лиц в воздушных перевозках;

- обеспечение конкурентоспособности авиации;

- обеспечение строительства аэродромов, аэропортов;

- создание рынка авиационных работ и услуг;

- создание системы лизинга гражданской авиационной техники.

Достаточно быстро стало понятно, что раздробление единого Аэрофлота на мелкие частные компании отрицательно сказалось на надежности и безопасности эксплуатации авиационной техники. Нарушилась регулярность полетов, участились катастрофы.

В авиационной промышленности наступил глубокий кризис. В 1997 году выпущено всего только 32 самолета, вместо нескольких сот самолетов. Прогнозируется до 2007 года выпуск только следующего количества самолетов: гражданских 50 – 70 в год, военных 15 – 25 в год, военных и гражданских вертолетов 20 – 40 в год, 25 машин на экспорт. Меняется структура авиационной промышленности. Будет создано 5 – 6 авиационных корпораций на базе самолетных КБ и заводов. Например, предприятие имени Туполева объединят с Ульяновским заводом "Авиастар", два вертолетных КБ имени Камова и имени Миля объединятся в одно вертолетное объединение, Московское КБ имени Ильюшина объединится с Воронежским самолетостроительным заводом и т.д.

Наиболее перспективными самолетами и вертолетами на ближайшее будущее являются следующие:

- истребители Су-37, Су-30МКИ, Су-34;

- штурмовик Су-39;

- амфибия А-40 и А-50;

- вертолеты Ка-50 (Черная акула), Ка-52 (Аллигатор), Ми-28Н;

- гражданские самолеты: Ил-96, Ил-114, Ту-204, Ту-214, Ан-38, Ан-70, Ан-77.

Пока из документов следует, что такие оригинальные ЛА, как экранопланы, не предусмотрено развивать. В сфере государственного влияния (но не государственные) останутся 39 самолетостроительных заводов и КБ, 11 двигательных предприятий, 47 приборных и агрегатных предприятий. Остальные предприятия (более 200) отпускаются на "свободу".

Для полного понимания особенностей авиационной промышленности полезно получить хотя бы краткие сведения о ведущих предприятиях – разработчиках самолетов и вертолетов.

АНТК им А.Н. Туполева. Прежнее название – "Опыт"

Основатель предприятия – Андрей Николаевич Туполев (1888 – 1972 гг.).

Первым самолетом Туполева был АНТ-1 в 1923 году. Это легкий спортивный моноплан. Выдающийся заслугой А.Н. Туполева считается разработка первого в мире цельнометаллического тяжелого бомбардировщика-моноплана ТБ-1 (АНТ-4). Его гражданский вариант – "Страна Советов" поразил всех конструкторов.

Всемирно известный восьми моторный гигант "Максим Горький" был построен А.Н. Туполевым в 1934 году за 1 год. На борт брал до 80 человек. Далее был самолет АНТ-25 в 1933 году, на котором В.П. Чкалов в 1937 году перелетел в США.

В начале пятидесятых годов был разработан первый в СССР дальний бомбардировщик Ту-16 со стреловидным крылом. На его базе построен самолет-ракетоносец ПВО.

В 1955 году был создан первый в мире реактивный пассажирский самолет Ту-104. Далее были Ту-134, Ту-154. В 1968 году был разработан первый в мире сверхзвуковой пассажирский самолет Ту-144. Первый полет он совершил 1 ноября 1977 года по маршруту Москва – Алма-Ата со скоростью 2300 км/ч на высоте 16 км.

В настоящее время заканчивается разработка пассажирского самолета Ту-204, который будет выпускаться на ульяновском самолетостроительном заводе "Авиастар". Теперь предприятие называется – "Авиационный научно-технический комплекс имени А.Н. Туполева" – АНТК им. А.Н. Туполева. Предприятие УКБП всегда имело тесные деловые отношения с коллективом АНТК.

А.Н. Туполев, выдающийся авиаконструктор, ученик Н.Е. Жуковского многое сделал для России. Это он организовал в г. Жуковском ЦАГИ – центральный аэрогидродинамический институт. Под его руководством в разное время работали авиационные конструкторы С.В. Ильюшин, Д.П. Григорович, В.М. Петляков, Н.Н. Поликарпов, С.А. Лавочкин. Многие из них в последствии организовали свои отдельные КБ.

Авиационный комплекс имени С.В. Ильюшина – ОАО АК им. С.В. Ильюшина

Организатором и Генеральным конструктором стал Сергей Владимирович Ильюшин. Свою инженерную деятельность он начал как конструктор спортивных и тренировочных самолетов и планеров. Этим занимались все авиаконструкторы. По его проекту в 1936 году был построен дальний бомбардировщик ДБ-3 (ЦКБ-30). Одна из модификаций получила название Ил-4, которых с 1940 по 1945 год было выпущено 6890 штук.

В 1939 году был построен бронированный штурмовик БШ-2 (ЦКБ-55). В 1941 году построен одноместный штурмовик Ил-2, который назвали "черной смертью" против пехоты противника и танков. С марта 1942 года Ил-2 стал двухместным (со стрелком). Этому самолету установлен памятник на берегу реки Истры под Москвой и на территории завода.

В послевоенные годы предприятием были разработаны пассажирские самолеты: Ил-18 (четырех моторный), Ил-62, Ил-86, Ил-96. Самолет Ил-62 начал эксплуатироваться с 1968 года как межконтинентальный. Он развивал скорость 950 км/ч, возил уже 195 человек. Самолет Ил-86 начал летать с 1976 года, и был разработан уже Г.Н. Новожиловым. Его скорость 950 км/ч, дальность 3600 км/ч, пассажиров 350 (аэробус широкофюзеляжный).

В настоящее время разработаны и внедряются в производство пассажирские самолеты Ил-96, Ил-114. С этим предприятием УКБП достаточно прочно и надежно сотрудничало на всем протяжении своего существования. На самолетах АК им. С.В. Ильюшина применялись все приборы и системы УКБП: ДАУ, САС-4, приборы скорости, КИСС.

ОАО "ОКБ им. Яковлева" (прежнее название "Скорость")

Московское авиационное предприятие было организовано в 1933 году авиационным конструктором Александром Сергеевичем Яковлевым. Как и многие конструкторы, вначале своей деятельности он занимался конструированием планеров, спортивных самолетов. До сих пор Як-18, Як-52Т используется для тренировки пилотов.

В 1940 году был разработан истребитель И-26, который превосходил немецкий истребитель Ме-109 по скорости. В серийном производстве этот истребитель получил наименование Як-1. В 1942 году на базе Як-1 создан массовый фронтовой истребитель Як-9. В 1943 году был разработан Як-3, который превосходил модификации немецких истребителей сразу на 100 – 120 км/ч. Он развивал скорость до 720 км/ч. Было выпущено 4848 таких истребителей.

До настоящего времени предприятие занимается разработкой, как военных, так и гражданских самолетов. К оригинальным военным следует отнести вертикально взлетающий истребитель Як-38. Этой фирмой разработаны и внедрены в серийное производство гражданские самолеты Як-40 и Як-42.

В военное время это предприятие занималось разработкой военных планеров, вертолетов, гидросамолетов, истребителей.

Разрабатываются легкие самолеты: Як-54 – двухместный, Як-112 – четырехместный, Як-58 – шестиместный. Возможно, в скором времени широкое применение найдут самолеты малой авиации (МА) на 2–9 человек.

ОАО "ОКБ Сухого"

Предприятие было организовано Павлом Осиповичем Сухим. Конструирование и опытное строительство самолетов в России в 1925 – 1936 годах осуществлялось в конструкторском бюро "Авиация, гидроавиация и опытное строительство" (АГОС) ЦАГИ и в Отделе сухопутного самолетостроения (ОСС), в Отделе морского опытного самолетостроения (ОМОС) под общим руководством А.Н. Туполева. Начальниками бригад там были конструкторы А.А. Архангельский, А.И. Путилов, В.М. Петляков, В.М. Мясищев, П.О. Сухой и другие ученики А.Н. Туполева.

В 1937 – 1938 годах КБ П.О. Сухого разработало бомбардировщик ББ-1 –потом под названием Су-2. Их было выпущено 500 штук. Позднее на базе Су-2 были разработаны бронированные штурмовики Су-2 и Су-8.

В послевоенные годы КБ под руководством П.О. Сухого было разработано много выдающихся конструкций истребителей и штурмовиков. Ныне это КБ под руководством М. Симонова разрабатывает и внедряет конкурентоспособные самолеты типа Су-27, Су-37, которые признаны лучшими в мире истребителями.

МАПО МиГ

Предприятие было организовано в 1939 году. Первыми руководителями его были Артем Иванович Микоян и Михаил Осипович Гуревич. Отсюда и название предприятие – МиГ. В это время правительство СССР поставило задачу перед авиационными конструкторами: в кратчайшие сроки создать новые боевые самолеты, которые по своим летно-тактическим данным должны превосходить самолеты фашисткой Германии. И особое внимание было обращено на разработку новых истребителей. Это было выполнено в течение семи – двенадцати месяцев под руководством конструкторов А.С. Яковлева, А.И. Микояна, П.О. Сухого и др.

Уже 5 апреля 1940 года в первый полет ушел МиГ-1 (И-200) почти одновременно с Як-1 и ЛаГГ-1 (конструкция С.А. Лавочкина, В.П. Горбунова и М.Н. Гудкова). Вскоре МиГ-1 был заменен на МиГ-3. На высоте полета более 5 км этот истребитель превосходил все самолеты мира. На малых высотах он уступал и Як-1 и ЛаГГ-3. МиГ-3 был принят на вооружение для защиты территории СССР в составе служб ПВО. Их было выпущено 3300 штук. На базе МиГ-3 было разработано 11 модификаций с поршневыми двигателями. Один из них И-225 в 1944 году достигал скорость 726 км/ч.

В 1945 году (перед окончанием ВОВ) был создан истребитель И-250(Н), на котором кроме поршневого двигателя был установлен и воздушно-реактивный двигатель с компрессором. Он развивал скорость 825 км/ч. И-250 стал переходным самолетом от поршневых самолетов к грозным реактивным "мигам" предприятия МиГ. Свой боевой счет на МиГ-3 открыл Герой Советского Союза А.Н. Покрышкин, сбив фашистский Ме-109.

Перед окончанием ВОВ правительство поставило задачу о развитии реактивной авиации. 24 апреля 1946 года в воздух взлетел реактивный истребитель И-300 (или МиГ-9). Он достигал скорость 965 км/ч с потолком Н=13 км.

В 1950 году МиГ-17 впервые в горизонтальном полете превысил скорость звука (V > 1225 км/ч). Далее были созданы знаменитые "МиГи": МиГ-19, МиГ-29 …

Из книги Гиннеса. СССР за один день 22 июня 1941 года потерял на Западной границе 1811 самолетов, из них 1489 были уничтожены на земле. Это мировой печальный рекорд. Среди этих самолетов было много истребителей МиГ-3. Получилось так, что истребители МиГ в Великой Отечественной войне практически не участвовали. А вот приятный факт в Книге Гиннеса – наибольшая высота полета 37650 м была достигнута летчиком А. Федоровым на самолете КБ МиГ Е-266М.

ОАО "ВНТК им. Камова"

Основателем предприятия является Николай Ильич Камов (1902 – 1973 гг.). В 1928 г. он создал первый советский автожир КАСКР-1 ("Иркутянка") (вместе с конструктором Н.К. Скржинским). Автожир – ЛА, несущие воздушные винты которого работают в режиме авторотации (они не соединены с двигателем). Аппарат взлетел 25 сентября и пролетел 250 метров. Далее Камов Н.И. работает в ЦАГИ и создает там автожир ЦАГИ А-7, который применялся в народном хозяйстве и даже в ВОВ.

Работа КБ Н.И. Камова была направлена для создания вертолетов соосной схемы с двумя винтами, вращающимися в разные стороны. В 1945 – 1946 гг. были построены вертолеты: Ка-8 и Ка-10, а потом Ка-15, Ка-18. На Ка-15 была достигнута скорость 170 км/ч. В 1965 году в небо поднялся универсальный вертолет "летающее шасси" Ка-26 (в том числе в сельскохозяйственном варианте). Летом 1959 года взлетел в небо винтокрыл, то есть самолет-вертолет, он развивал скорость 356,5 км/ч.

В настоящее время всему миру известны оригинальные вертолеты предприятия ВНТК им. Камова. В 1982 году появился Ка-50 ("Черная акула") – боевой ударный, одноместный для уничтожения бронетанковой техники, воздушных целей и живой силы. Эффективность наивысшая. Высокоманевренный. В 1997 году ушел в полет Ка-52 ("Аллигатор") – всепогодный, многоцелевой, двухместный, двухвинтовой вертолет. Модификация Ка-50. Первый полет – 25.06.1997 г. Ка-32А – многоцелевой, для перевозки людей, грузов, для производства спасательных работ, разгрузки-погрузки судов, монтажных работ. Выпускается серийно. Ка‑31 – для дальнего радиолокационного обнаружения низколетящих целей типа самолет, вертолет и надводных кораблей. Конкурентами вертолетов Камова могут быть лучшие вертолеты США типа "Апач" и перспективный вертолет США "Комач" фирмы "Боинг-Сикорский". Специалисты считают, что в новом тысячелетии настоящая техническая революция может наступить именно в вертолетостроении. Говорят, что уже сейчас их требуется около двух тысяч для обновления устаревшего парка.

ОАО им. Миля

Открытое акционерное общество имени М.Л. Миля было организовано авиационным конструктором Михаилом Леонтьевичем Милем (1909 – 1970 гг.). Имя М.Л. Миля стоит среди первых авиаконструкторов и вертолетостроителей в особенности. КБ во главе с М.Л. Милем было создано в 1947 году с целью создания одновинтовых вертолетов.

В 1949 году был разработан вертолет Ми-1.

В 1952 году разработан десантно-транспортный вертолет Ми-4, установивший 7 мировых рекордов и завоевавший золотую медаль в Брюсселе. Это был последний вертолет предприятия с поршневым двигателем. Первыми вертолетами с газотурбинной установкой были Ми-6, вертолет-кран Ми-10 и вертолет-гигант Ми-12. Вертолет-гигант Ми-12 может поднимать груз весом 40150 килограммов до высоты 2250 метров. Под мотогондолами Ми-12 могут размещаться самолеты Ту-144 и "Конкорд".

Важным этапом было создание экономичного комфортабельного 28-местного вертолета Ми-8, который по грузоподъемности превосходил в 2,5 раза вертолет Ми-4, а по скорости в 1,4 раза. Среди легких вертолетов следует назвать Ми-2, который выпускается в Польше. Лучшим современным военным вертолетом является вертолет Ми-28Н (ночной).

ТАНТК им. Г.М. Бериева

Основателем этого предприятия был Бериев Георгий Михайлович. Этот авиационный комплекс занимается разработкой и внедрением гидросамолетов, амфибий. Современными самолетами этого предприятия являются самолет амфибия А-40 с массой 86 тонн и многоцелевой самолет Бе-200. Самолет А-40 в пожарном варианте на скорости 250 км/ч сбрасывает 25 тонн воды.

О мощности авиационной промышленности свидетельствует темп выпуска самолетов во время Великой Отечественной войны. Всего за время войны было выпущено 137269 самолетов, в том числе по годам: 1942 год – 25436 самолетов, 1943 – 34900 самолетов, 1944 – 40300 самолетов, за полугодие 1945 года – 2090 самолетов. В этом числе было выпущено типов самолетов: штурмовиков Ил – свыше 39000 штук, истребителей Як – свыше 36000 штук, истребителей Ла – 22000 штук (Ла-5, Ла-7), истребителей МиГ-3 – 3300 штук, пикирующих бомбардировщиков Пе-2 – 11427 штук.

Долговечность – свойство изделия сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонта.

В технической документации изделий чаще всего указываются технический ресурс, средняя наработка до отказа, назначенный ресурс, назначенный срок службы, гарантийный срок службы.

Важно отметить, что все эти характеристики изделия должны обладать способностью быть испытанными и измеренными, быть доказуемыми.

Технический ресурс – наработка изделия от начала его эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Предельное состояние – состояние изделия, при котором его дальнейшее применение по назначению недопустимо или нецелесообразно, либо восстановление его исправного состояния невозможно или нецелесообразно.

Средняя наработка до отказа – математическое ожидание наработки изделия до первого отказа.

Назначенный ресурс – суммарная наработка изделия, при достижении которой применение по назначению должно быть прекращено.

Назначенный срок службы – календарная продолжительность эксплуатации изделия при достижении которой применение по назначению должно быть прекращено.

Гарантийный срок – часть назначенного ресурса, в течение которого завод-изготовитель несет материальную ответственность в процессе эксплуатации изделия (в течение гарантийного срока ремонт и замена производятся заводом без затрат для потребителя).

Параметры надежности назначаются, прежде всего, из соображений безопасности полета самолета, экономичности его разработки, изготовления и эксплуатации и конкурентоспособности. Эти показатели для аппаратуры конкретного самолета назначаются, исходя из его основных показателей. Желательно, чтобы приборы и системы имели назначенные ресурс и срок службы такие же, что и самолет (как говорят – "по планеру").

По мере совершенствования техники и технологии величины надежностных характеристик растут. Например, на базе мирового опыта эксплуатации установлено, что назначенный ресурс в настоящее время должен быть:

- 60 000 летных часов – для гражданских самолетов (таблица 1.1);

- 3 000 - 5 000 летных часов – для легких самолетов;

- 15 000 – для гражданских вертолетов.

Другие характеристики для гражданского самолета следующие:

- гарантийный срок хранения – 2 - 5 лет;

-общий срок службы – 20 – 25 лет;

-гарантийная наработка соответствует одному году наработки или около 2 000 летных часов в среднем.

Это ориентировочные показатели качества, которые устанавливаются в ТЗ. В дальнейшем они уточняются по мере накопления серийного выпуска и эксплуатации изделия.

Примеры:

Самолет Ил-62. Назначенный ресурс 35000 летных часов, назначенный срок службы 25 лет.

Самолет Як-42. Назначенный ресурс 20000 летных часов, назначенный срок службы 20 лет.

Самолет Ту-204. Назначенный ресурс 60000 летных часов, назначенный срок службы 20 лет.

Самолет Ил-96. Назначенный ресурс 60000 летных часов, назначенный срок службы 20 лет.

Военные самолеты, особенно истребители, имеют относительно низкие назначенные показатели надежности.

Таблица 1.1

Тип

Расчетный ресурс

Достигнутая наработка

Число
самолетов

Число
полетов

Налет, час.

Число
полетов

Налет, час.

В-707

-

60 000

33 300

65 200

683

В-720

-

60 000

52 400

60 600

122

В-727

50 000

60 000

46 000

46 400

1396

В-737

75 000

51 000

55 300

36 400

538

В зависимости от характера отказов, их частоты повторения на самолете возникают различные особые ситуации: усложнение условий полета, сложная ситуация, аварийная ситуация и катастрофическая ситуация [4].

Самая сложная и опасная ситуация это катастрофическая особая ситуация, характеризующаяся тем, что при ее возникновении предотвращение гибели людей оказывается практически невозможным (гибель хотя бы одного человека через 10 часов после полета). Эта особая ситуация должна быть практически невероятная, с вероятностью ее появления менее Р=10-9. Разработчик изделия должен знать, не участвует ли оно в создании такой ситуации.

Обеспечение необходимой надежности самолета – задача сложная и комплексная. Инженеры говорят, что надежность закладывается в конструкции, обеспечивается в производстве и поддерживается в эксплуатации:

,

где Рк – надежность конструкции, Рп – надежность производства, Рэ – надежность эксплуатации.

Безопасность полета самолета необходимо обеспечивать совместными усилиями, как это сказано в НЛГС-3, НЛГВ-2. Борт самолета должен быть так оборудован и таким количеством реальных приборов и систем, чтобы обеспечивался необходимый уровень безопасности полетов, то есть полет без риска для жизни экипажа и пассажиров.

Основными факторами для этого являются:

- высокая надежность планера самолета;

- высокая надежность двигателя и каждого прибора и системы;

- высокая квалификация летчиков, их дисциплина;

- высокая квалификация обслуживающего персонала, его дисциплина;

- оптимальное комплектование приборов и систем;

- наличие специальных средств и систем безопасности.

За критерии безопасности в мировой практике приняты:

- либо относительный показатель по числу погибших пассажиров на 100 миллионов пассажиро-километр;

- либо количество катастроф на 100 миллионов километров налета самолета;

- либо количество катастроф на 100 тысяч часов налета парка однотипных самолетов;

- либо количество катастроф на 100 тысяч посадок.

В гражданской пассажирской авиации принят первый критерий – по числу погибших пассажиров. Ниже приведена таблица 1.2 катастроф за период с 1955 г. по 1989 г. За этот период заметно улучшился критерий безопасности, однако абсолютное количество погибших пассажиров не уменьшилось, что объясняется ростом пассажиро-емкости новых широкофюзеляжных самолетов типов Боинг, Ил, А-300, Ил-86, Як-42.

Отметим, что современные уровни назначенных ресурсов подтверждены практической наработкой отечественных и зарубежных самолетов, о чем свидетельствует таблица 1.1.

Причинами катастроф могу быть не только технические (отказ оборудования или поломка самолета), но и другие. К ним можно отнести следующее:

- человеческий фактор, который составляет (80 – 85) % от общего числа причин катастроф. Объясняется это недисциплинированностью на 20 %, низкой профессиональной подготовкой на 50 %, отклонением здоровья на 5 % и др.;

- террористические акты, число которых обычно растет по мере осложнения обстановки в мире. Так, в 1985 году их было 10, в 1970 – 13, в 1975 – 24. В 1970 году было убито 100 террористов, в 1973 – 222 террориста, в 1985 – 437 террориста;

- поражение самолета молнией. Статистика утверждает, что каждый самолет в год подвергается удару молнии, особенно на высотах полета от 1,5 до 12 км. При этом ток по корпусу самолета достигает 50 000 А с длительностью от 2 до 50 мкс;

- встреча с птицами и др.

Разработчики авиационных приборов и систем могут активно способствовать повышению критерия безопасности. Для этого существуют следующие научно-технические направления:

- внедрение технических средств, способствующих уменьшению рабочей напряженности пилотов;

- совершенствование систем отображения информации;

- совершенствование систем оповещения и предупреждения и предотвращения критических ситуаций;

- внедрение систем спасения пилотов и членов экипажа вплоть до принудительной эвакуации;

- внедрение электронного члена экипажа, способного в критических ситуациях заменять пилота, постоянно контролируя его состояние по следующим признакам: частота мигания глаз, диаметр глазного зрачка, ритм сердца, напряженность голоса, качество речи, электрическое сопротивление кожи, мышечное напряжение и др.

Рис. 1.1. Показатель безопасности

Таблица 1.2 демонстрирует критерий безопасности по данным ИКАО за длительный период – с 1955 по 1989 год.

Таблица 1.2

Авиационные происшествия за 1955 – 1989 гг. в странах ИКАО с СССР

Количество катастроф

Число погибших

Относительные показатели

Всего

На 100 млн. пассажиро-км

Год

Всего

на 100 млн. км налета

на 100 тыс. часов налета

на 100 тыс. посадок

1955

26

1,14

0,36

-

407

0,67

1956

27

1,06

0,34

-

552

0,78

1957

31

1,09

0,56

-

507

0,62

1958

30

1,02

0,34

-

609

0,72

1959

28

0,91

0,31

-

613

0,63

1960

34

1,09

0,40

0,52

873

0,8

1961

25

0,8

0,31

0,38

805

0,69

1962

29

0,90

0,37

0,44

778

0,60

1963

31

0,90

0,39

0,46

715

0,49

1964

25

0,68

0,30

0,35

616

0,36

1965

25

0,61

0,29

0,33

684

0,35

1966

31

0,69

0,33

0,40

1001

0,44

1967

30

0,57

0,29

0,35

678

0,25

1968

35

0,58

0,32

0,38

912

0,29

1969

32

0,48

0,27

0,34

946

0,27

1970

28

0,40

0,23

0,29

687

0,18

1971

31

0,44

0,26

0,31

867

0,21

1972

42

0,58

0,34

0,43

1210

0,26

1973

32

0,42

0,25

0,30

859

0,17

1974

27

0,38

0,23

0,29

1272

0,23

1975

16

0,21

0,12

0,15

467

0,083

1976

20

734

0,12

1977

24

516

0,07

1978

25

755

0,09

1979

31

878

0,1

1980

21

812

0,09

1981

18

350

0,04

1982

25

748

0,08

1983

20

809

0,08

1984

16

223

0,02

1985

22

1066

0,09

1986

17

331

0,03

1987

24

890

0,06

1988

25

709

0,05

1989

19

762

0,05

Глава 2

ГИПОТЕЗЫ И ЗАКОНЫ АЭРОДИНАМИКИ.
КЛАССИФИКАЦИЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

2.1. Строение атмосферы

Атмосфера является средой полета различных летательных аппаратов. Она имеет сложное строение, однако условно ее делят на слои с указанием их особенностей. Наиболее характерными и интересными для авиастроителей имеют слои тропосфера, стратосфера, ионосфера и экзосфера [12 – 15, 19 – 20].

Тропосфера – часть атмосферы, граничащая с Землей (H = 10 – 17 км), где заметно тепловое излучение земной поверхности, где температура заметно уменьшается с удалением от Земли. В тропосфере образуются облака, дуют ветры, тут находится вся испаренная влага, меняется влажность, температура, направление ветра.

На верхней границе тропосферы температура остается постоянной. Далее по высоте располагается стратосфера. В стратосфере температура почти постоянна (~ до 30 км). Ветры там имеют постоянные направления и направлены против вращения Земли (происходит расслоение нижних и верхних слоев воздуха вследствие малого сцепления частиц воздуха).

Ионосфера характеризуется наличием свободных ионов и электронов и непрерывным повышением температуры. Границы ионосферы непостоянны (H ≈ до 200 км).

Экзосфера не имеет вообще границ. Это переходная зона от земной атмосферы к межпланетному пространству (H = от ~ 500 до 1000 км). Известно что:

50 % массы атмосферы расположено на высотах 0 – 5,5 км;

75 % массы атмосферы расположено на высотах 0 – 10 км;

94 % массы атмосферы расположено на высотах 0 – 20 км над уровнем моря.

Масса атмосферы составляет 1/1000000 массы Земли.

Свойства земной атмосферы и происходящие в ней явления изучает наука, называемая метеорологией. Свойства атмосферы используются нами для измерения высоты и скорости полета. От них зависят условия работы пилотов самолетов, тяга двигателя, подъемная сила самолета. Для устранения усложнений в полете (а то и катастроф) необходимо изучение аномальных явлений в атмосфере.

К аномальным явлениям относятся грозы, горизонтальные и вертикальные порывы ветра, турбулентные движения воздуха. Струйные течения воздуха могут быть со скоростью от 100 до 700 км/ч.

Воздух атмосферы является смесью газов: 78 % азота (N2), 21 % кислорода (O2), 0,94 % аргона (A2), 0,03 углекислого газа (CO2), 0,01 % водорода (H2) 0,01 % неона (Ne2) 0,01 % гелия (He2), 1,2 % пара. На высотах 30 – 50 км имеется озон (O3). Максимальное его количество находится на высоте ~ 35 км и составляет 0,00075 %, тогда как у Земли его только 0,00001 %. Фактически воздух состоит из отдельных молекул газов и не является сплошной средой (особенно на больших высотах).

Для практических целей авиационные науки нуждаются в установлении закона изменения с высотой основных параметров: как плотность, давление, температура воздуха, скорость звука, вязкость. Но эти параметры зависят еще и от времени года и суток, от случайных явлений в природе. При испытаниях приборов, систем и самолетов требуется проводить сравнение результатов в одинаковых условиях. Так возникла необходимость создания условной стандартной атмосферы (СА), являющейся схемой действительной атмосферы, в которой отсутствуют колебания, вызванные метеорологическими или астрономическими факторами.

На параметры стандартной атмосферы действуют государственные стандарты: ГОСТ 4401-81 (Атмосфера стандартная. Параметры), ГОСТ 3295-73 (Таблицы гипсометрические для геопотенциальных высот до 50000 м. Параметры), ГОСТ 5212-74 (Таблица аэродинамическая. Динамические давления и температуры торможения воздуха для скорости полета от 10 до 4000 км/ч. Параметры) и др. [31 – 33]. В отличие от стандартной атмосферы существуют атмосферы справочные, учитывающие широту местности и время года.

В стандартной атмосфере принимаются стандартными исходные параметры: ускорение свободного падения gс = 9,80665 м/с2; скорость звука aс = 340,294 м/с; средняя длина свободного пробега частиц воздуха lс = 66,328∙10-9 м; давление Pс = 101325,0 Па (760 мм рт. ст.), температура Кельвина Tс = 288,15 К; кинематическая вязкость νс = 14,607∙10-6 м2/с; динамическая вязкость μс = 17,894∙10-6 Па∙с; плотность весовая γс = 1,2250 кг/м3; плотность массовая

.

Закон изменения температуры воздуха на высотах от нуля до 11000 метров над уровнем моря следующий:

, (2.1)

где Tн – абсолютная температура воздуха на высоте Н; а – температурный градиент, равный 0,0065 °С/м; Н – высота над уровнем моря; Т0 = 288 °К. Для Н > 11000 м Tн = 216,5 °К = const. Изменение барометрического давления для высот Н < 11000 м:

, (2.2)

где Pн – давление на высоте Н; Pо = 760 мм рт. ст.; νо – весовая плотность (1,2255 кг/м3); а – температурный градиент (0,0065 °С/м).

Важнейшей характеристикой воздуха является его влажность. Относительная влажность может быть определена по формуле

, (2.3)

где R – относительная влажность; q – абсолютная влажность – количество пара в граммах, содержащееся в 1 м3; Q – количество насыщающих паров при данной температуре в г/м3.

Предел насыщения воздуха водяными парами в зависимости от температуры приведен в таблице 2.1.

Таблица 2.1

t, °С

-30

-20

-10

0

+10

+20

+30

Q, г/м3

0,5

1,0

2,5

5,0

9,5

17,0

30,1

Важно обратить внимание на то, что при понижении температуры воздуха наступает перенасыщение, пар превращается в капли воды [13]. Самолетостроители и разработчики приборов и систем должны это учитывать в своей практике. В связи с этим явлением внутри самолета накапливается большое количество воды, которая пагубно влияет на работоспособность техники.

2.2. Гипотеза сплошности газовой среды

Теория была введена в практику исследования Даламбером в 1744 году, а затем Эйлером в 1753 году в противовес корпускулярной теории Ньютона.

Воздух атмосферы представляет собой смесь различных газов. До принятия гипотезы сплошности исходили при экспериментах из того, что существует как бы смесь несвязанных между собой молекул газов, между которыми существуют дыры (сито).

Гипотеза сплошности в аэродинамике основана на том, что расстояние между молекулами воздуха и свободный пробег молекул малы по сравнению с обтекаемым воздухом телом. В связи с этим принимается, что воздух (и вода) однородная, сплошная, без разрывов масса [17, 19, 20].

Длина свободного пробега молекул зависит от числа молекул в единице объема, т.е. от плотности среды. Мы уже знаем, что вся масса воздуха находится в пределах тропосферы (высота Н ≤ 10…17 км) и что плотность сильно уменьшается с ростом высоты над уровнем моря. У Земли (Н = 0) в одном кубическом миллиметре содержится 2,7∙10+16 молекул воздуха при массовой плотности ρо ≈ 0,125 кг∙с24. На высоте Н = 160 км в том же объеме содер-

жится 1 молекула воздуха. А плотность воздуха, например, на высоте Н = 20 км, ρ20 = 0,008965 кг∙с24.

Длина свободного пробега по высотам в среднем распределяется следующим образом (таблица 2.2).

Таблица 2.2

Н, км

0

10

30

62

84

100

120

150

400

Lсв, см

8,6∙10-6

2,1∙10-5

4,8∙10-5

4,9∙10-2

0,5

6

1,3∙102

2,0∙103

5,5∙104

Некоторые ученые считают границей применимости гипотезы сплошности отношение длины свободного пробега молекулы воздуха к хорде крыла, равное 1/10+5.

Кроме плотности воздуха длина свободного пробега зависит от температуры (т.е. от скорости хаотического движения) и от размеров молекул. Средняя длина пробега молекул воздуха рассчитывается по формуле

, (2.4)

где К – отношение теплоемкости воздуха при постоянном давлении ср к его теплоемкости при постоянном объеме сv, т.е.

;

ν – кинематический коэффициент вязкости, м2/с; a – скорость звука в воздушной среде в м/с.

Так как параметры ν иa зависят от высоты над уровнем моря, то и параметр Lсв зависит от той же высоты (см. таблицу 2.2).

Критерием применимости гипотезы сплошности является число Кнудсена

или , (2.5)

где b – хорда крыла, δ – толщина пограничного слоя.

Окончательно, или другое значение коэффициента Кнудсена таково:

, (2.6)

где М – число Маха, Re – коэффициент Рейнольдса, равный

, (2.7)

где v – скорость движения в м/с, b – средняя хорда крыла в метрах, ν – коэффициент кинематической вязкости в м2/с (рис. 2.1).

Практический смысл гипотезы сплошности для специалистов в области приборостроения и самолетостроения состоит с возможности определения границ применения способов измерения воздушных параметров, например, манометрического метода при определении скорости, числа М, подъемной силы.

Рис. 2.1. Обтекание крыла потоком воздуха

По Ньютону получалось в его корпускулярной теории, что сопротивление движению есть результат ударов частиц о тело и равно:

, (2.8)

где ρ – плотность воздуха; v – скорость движения; S – площадь крыла.

Теперь мы уже будем знать, что формула неверна, она завышает силу сопротивления в два раза.

Область аэродинамики, рассматривающая движение твердых тел в сильно разреженном газе, называется супераэродинамикой [17].

Рис. 2.2. Границы областей аэродинамики и супераэродинамики:

I – Область супераэродинамики (потоки свободных молекул);

II – Переходная область – течение со скольжением (вместо полного торможения);

III – Область аэродинамики (газовой динамики, обычные потоки газа с большими скоростями)

Выводы из гипотезы сплошности:

Гипотеза упрощает исследование процессов движения.

Она позволяет рассматривать все механические характеристики жидкой среды – скорости, плотности, давления, числа М и т.д., как функции координат точки и времени. Эти функции предполагаются непрерывными и дифференцируемыми.

Из гипотезы сплошности следуют ограничения применимости методов измерения скоростных параметров. Например, манометрический метод может быть достоверно использован при Н ≈ 30000 метров над уровнем моря, при скоростях, соответствующих числу Re = 102…107.

При большом разряжении воздуха и при несоблюдении критерия Кнудсена воздушную среду нельзя считать сплошной. В этих условиях нельзя считать применяемым и принцип непрерывности течения потока воздуха. В этих условиях иными становятся законы образования силы сопротивления движению и подъемной силы. В свободномолекулярном потоке газа единственными силами воздействия газовой среды на движущееся тело являются силы ударов молекул газа о поверхность тела. Величину аэродинамических сил можно оценить по ударной теории Ньютона.

2.3. Принцип обращенного движения

Принцип обращенного движения говорит о том, что аэродинамические силы не зависят от того, какое из двух взаимодействующих тел (газ или летательный аппарат) покоится, а какое находится в прямолинейном равномерном движении [19, 20]. При этом происходит замена системы: "Неподвижный воздух – движется объект" системой "Неподвижный объект – подвижный воздух". На этом основании считаются справедливыми результаты исследований в аэродинамических трубах. Это справедливо и в случае обтекания тела жидкостью.

Утверждается и обосновывается, что если одно и то же плоское крыло, например, (и сам самолет), обтекается потоком воздуха (жидкости) с одной и той же скоростью и одним и тем же углом атаки, но в противоположном направлении, то подъемная сила Y в обоих случаях будет одной и той же (равной друг другу).

Рис. 2.3. Две схемы обтекания тела потоком воздуха:

1 – прямой поток;

2 – обратный поток

Математически принцип обосновывается следующим образом.

, (2.9)

где , , – коэффициент давления.

При :

, (2.10)

или

Y1 = Y2 (2.11)

На практике могут встретиться многие сложности при применении принципа обращенного движения.

Точно принцип выглядит только теоретически, так как сложно учесть такие факторы как:

– точное достижение равномерности потока по сечению аэродинамической трубы, реки, бассейна;

– влияние стенок трубы, берегов и дна бассейна (реки);

– факт искажения потока испытуемым телом. В связи с последним сечение тела должно составлять 3 % и менее по отношению к сечению трубы (бассейна).

Первые опыты по определению сопротивления при движении проводились в натуральных условиях. Например, Галилей наблюдал падение тел в воздухе с большой высоты. Сопротивление определялось по результатам измерения высоты и времени падения тела. Эйлер (1905 г.) исследовал падение тела, скользящего по вертикально натянутой проволоке. Для этого использовалась Эйфелева башня. Тело падало с высоты 115 метров со скоростью 40 м/с. Применялся так называемый способ протаскивания, буксировки. Это использовалось для выбора оптимальных форм морского корабля при горизонтальном движении его в воде. Были попытки применения этого метода и при исследовании воздушных моделей, когда модель устанавливалась на движущуюся по рельсам тележку. Но способ при этом был связан с недостатками: ограниченная скорость, влияние тележки на поток воздуха, неравномерность движения тележки. Этот способ остался приемлемым для исследования морских судов, гидросамолетов. Лилиенталь (1874 г.) и др. использовали естественный ветер для определения силы сопротивления.

В авиации широкое применение нашла аэродинамическая труба, "воздуходувка", по Циолковскому. Известно, что первая труба появилась в 1884 году. К.Э. Циолковский в 1896 –1897 годах начал проводить систематические исследования в аэротрубе. В 1902 году появилась аэротруба Н.Е Жуковского с диаметром 1,2 м. К аэротрубам предъявляются большие требования. Равномерность скорости должна быть до 1 %, отклонение потока от оси трубы не более 0,1 %, тело в трубе не должно занимать более 3% рабочей площади трубы.

2.4. Уравнение неразрывности движения потока

При обтекании тела частицы воздуха совершают сложное движение: поступательное, вращательное и деформационное (меняется форма и объем). С этим связаны типы обтекания: безвихревое (ламинарное) и вихревое (турбулентное) [20].

Уравнение неразрывности движения потока в математическом смысле представляет собой закон сохранения массы (основной закон природы) [20].

Это значит, что масса m в объеме W неизменна, то есть

, или: . (2.12)

Однако каждая составляющая ρ и W могут при этом изменяться:

. (2.13)

Последнее выражение и есть общее уравнение теории неразрывности движения потока жидкой среды (воздух, вода и т.п.). Частный случай общего уравнения – это установившееся движение, когда . Это относится и к несжимаемой жидкости.

Рассмотрим течение жидкости через отдельную струйку.

Рис. 2.4. Течение жидкости через струйку

Количество жидкости, поступающее в единицу времени в объем через торцевое сечение I площадью S1 и равное ρ1v1S1, будет таким же, как масса жидкости ρ2v2S2, вытекающая через противоположное сечение II площадью S2, то есть:

или (2.14)

Последнее уравнение представляет собой уравнение массового расхода жидкости (воздуха), секундный расход. Для контроля определим размерность уравнения массового расхода:

– размерность массы в технических единицах. Для несжимаемой жидкости v1S1 = v2S2, когда , а .

Рассмотренная гипотеза практически используется при обосновании характера обтекания тела в потоке, при обосновании формулы подъемной силы крыла, флюгарки ДАУ.

2.5. Подъемная сила. Теорема Николая Егоровича Жуковского [17, 18, 20, 21]

На рисунке 2.5 представлено крыло в потоке воздуха, расположенное к оси потока под углом атаки α. Здесь Y – подъемная сила, Q – лобовое сопротивление, которое в 20 – 25 раз меньше подъемной силы Y.

Рис. 2.5. Крыло в потоке воздуха

В 1906 году Н.Е. Жуковский для крыла бесконечного размаха доказал теорему о том, что на такое тело (при наличии циркуляции Г вокруг него) действует подъемная сила Y. Закон основан на применении закона количества движения к массам жидкости, обтекающего крыло.

Рис. 2.6. Геометрические характеристики крыла:

bкорн – корневая хорда;

bконц – концевая хорда;

bСАХ – средняя аэродинамическая хорда

Н.Е. Жуковский рассматривал крыло бесконечного размаха, у которого отношения корневой хорды (bкорн) к концевой хорде (bконц) равно бесконечности, то есть при bконц ≈ 0 или: bкорн/ bконц ≈ ∞ [17, 18, 20, 21].

Теорема Жуковского формулируется следующим образом: если поток, имеющий в бесконечности скорость v и плотность ρ, обтекает цилиндрическое тело (крыло) и циркуляция скорости вокруг этого тела равна Г, то на тело со стороны жидкости будет действовать сила Y, перпендикулярная направлению скорости v и равная произведению циркуляции на плотность и скорость потока в бесконечности [17].

Математически теорема Жуковского может быть записана формулой:

, (2.15)

где l – длина части крыла бесконечного размаха, подъемную силу которой хотят определить.

Рис. 2.7. Геометрические параметры профиля крыла:

1 – средняя линия;

2 – хорда;

3 – кривизна абсолютная

Величина циркуляции была предложена Жуковским в виде

, (2.16)

где b – хорда профиля крыла, α – угол атаки крыла в радианах, – относительная кривизна профиля крыла (т.е. отношение кривизны к хорде).

Подставив последнее выражение (2.16) в предыдущее (2.15) получим:

. (2.17)

Положив bl= S (площадь крыла), в радианах, с учетом того, что суммарный угол обычно не превышает 15˚ ≈ 0,26 радиана, будем иметь:

. (2.18)

Как показала дальнейшая практика определения подъемной силы, выведенная теоретическая зависимость не полностью отражает действительность. Связано это с тем, что при выводе не был учтен пограничный слой вокруг крыла. В начале зарождения теории полета практика обгоняла теорию.

Как уже было сказано, для продувок аэродинамических тел в авиации служат аэродинамические трубы, в которых определяются реальные характеристики, в том числе и подъемные силы и силы лобового сопротивления конкретных тел.

Рис. 2.8. График зависимости безразмерного коэффициента подъемной силы Су от угла атаки α:

1 – несимметричное тело;

2 – симметричное тело

На рисунке 2.8 приведена зависимость коэффициента подъемной силы Су от угла атаки. Практически подъемная сила определяется по формуле

. (2.19)

Коэффициент и зависит от многих конструктивных параметров обтекаемого тела (крыла):

, (2.20)

где λ – удлинение крыла, λ = l2/S; l – длина крыла; S – площадь крыла; η – сужение крыла, η = bкорн /bконц, bкорн – корневая хорда, bконц – концевая хорда крыла; χ – стреловидность крыла; М – число Маха; – относительная кривизна крыла.

Для крыла с большим удлинением (λ > 2) и сужением (крыло бесконечного удлинения) все перечисленные параметры имеют существенное влияние на величину коэффициента . Однако для крыла с малым удлинением коэффициент в основном зависит от удлинения. При этом малым удлинением считается величина .

У крыльев бесконечного размаха по опытным данным коэффициент 1/град ≈ 5,7 1/радиан. Для крыльев конечного размаха этот коэффициент меньше. Зная значение можно теоретически определить значение коэффициента подъемной силы для любого удлинения:

, (2.21)

где τ – поправочный коэффициент, равный τ ≈ 0,18.

Для точного определения значения всех коэффициентов крыло продувается в аэродинамической трубе.

Для крыла малого удлинения типа флюгарки коэффициент имеет следующую зависимость при М < 1:

. (2.22)

В таблице 2.3 со звездочкой приведены практические значения , а без звездочки по формуле (2.22).

Таблица 2.3

Λ

0,5

1,0

1,5

2,0

3,0

, рад

0,9*
0,8

1,6*
1,57

2,1*
2,35

2,6*
3,14

3,2*

Формула пересчета (2.21) мало пригодна для крыльев с малым удлинением, но хорошо приемлема для крыльев с большим удлинением (λ > 2). У крыльев с малым удлинением коэффициент значительно меньше коэффициента крыла с большим удлинением.

Рис. 2.9. Сравнение кривых Су (α) пластин больших и малых удлинений:

1 – λ > 2;

2 – λ < 2

Теорема Жуковского явилась основой теории полета и аэродинамики крыла. Она отвечает на вопрос: "Почему самолет летает?" Теорема Жуковского вместе с гипотезой о неразрывности движения потока объясняет принцип образования подъемной силы крыла самолета, особенности восприятия статического давления в ПВД и др.

На рисунке 2.10 показано крыло в потоке воздуха. Показано, что под крылом давление больше по сравнению с давлением над профилем крыла. Струи воздуха чтобы соединится в одной точке (разрыв не допустим) после прохождения крыла должны двигаться с разными скоростями, так как их пути следования разные. Верхний слой движется с большей скоростью, а значит давление над крылом меньше давления под крылом. Разность давления, умноженная на площадь крыла, создает подъемную силу.

Рис. 2.10. Характер обтекания крыла в потоке воздуха, установленного под углом атаки α к потоку:

- - - - – давление над крылом;

+ + + + – давление под крылом

Рис. 2.11. Гофрированное тело в потоке воздуха

Рис. 2.12. Распределение избыточного давления по поверхности гофрированного тела в потоке воздуха

На переднем участке, на гладком цилиндре используется принцип Пито, когда в лобовом отверстии воспринимается полное давление Рп, а на гладких параллельных потоку стенках прибора с отверстиями воспринимается статическое давление Рст.

Эффект ребристой поверхности используется в авиаприборостроении для компенсации погрешностей восприятия статического давления при помощи ПВД.

Например, если в месте установления ПВД на самолете погрешность имеет плюсовой знак, то для компенсации ее нужно взять статическое давление от камеры А с отрицательной погрешностью.

Это же явление используется для повышения чувствительности измерителя приборной скорости. И в этом случае статическое давление нужно взять в камере А. Тогда динамическое давление сформируется следующим образом:

(2.23)

Рис. 2.13. График динамического давления в зависимости от скорости:

1 – кривая до компенсации;

2 – кривая после компенсации с помощью гофрированного тела

На графике 2.13 видно, что новая кривая 2 круче стандартной кривой 1.

Идеально шар в потоке не имеет подъемной силы, если он не вращается. Стоит его закрутить, как появляется подъемная сила.

Рис. 2.14. Шар в потоке воздуха

При вращении ω шар будет иметь подъемную силу, так как Р1 > Р2. Это объясняется тем, что в верхней точке движение потока ускоряется, а в нижней точке замедляется.

Приведенные здесь положения не действуют в свободномолекулярном потоке. Там применима теория Ньютона, ударная теория. Из этой теории следует, что образуется только сила лобового сопротивления, подъемная сила отсутствует, так как сплошности нет, гипотеза о неразрывности не действует, циркуляции вокруг тела нет. Но практически в отличие от теории Ньютона небольшая подъемная сила появляется. Аэродинамическое качество К = Сy/Сx в свободномолекулярном потоке при диффузионном отражении молекул мало. Так, при М = 1 К = 0,5, а при М = 20 К = 0,1. Это подтверждает факт того, что эффективность несущей поверхности летательного аппарата в разреженной атмосфере мала.

Основные выводы о природе образования подъемной силы

Подъемная сила независимо от направления набегающего потока всегда направлена перпендикулярно этому направлению и лежит в плоскости симметрии самолета.

Подъемная сила может быть положительной, если угол атаки положителен, и отрицательной при отрицательном угле атаки.

Симметричные профили при нулевом угле атаки не создают подъемной силы.

Формула подъемной силы является полуэмпирической и не дает возможности найти теоретически наиболее выгодные формы профиля и крыла в плане. На эти вопросы отвечает теория крыла Н.Е. Жуковского.

При отсутствии циркуляции нет разности давлений и скоростей на верхней и нижней поверхностях обтекаемого тела, а, следовательно, нет и подъемной силы. Это значит, что при наличии подъемной силы в потоке должны существовать вихри.

Циркуляция вокруг несимметричных тел в потоке возникает самостоятельно, без помощи его вращения за счет разгонного вихря [17].

Рис. 2.15. Бесциркуляционное обтекание крыла.

При обтекании, изображенном на рис. 2.15, подъемная сила на крыле не образуется, так как давления над крылом и под крылом равны. При этом предполагается, что струйки движутся с одинаковой скоростью по контуру крыла как над крылом, так и под крылом. Задняя критическая точка К2 при этом должна оказаться на верхней стороне профиля. Но такое обтекание невозможно. При реальном обтекании точка К2 немедленно окажется у задней кромки крыла. Появляется вихрь вокруг крыла, и обтекание будет напоминать картину, изображенную на рис 2.10.

2.6. Кармановские колебания

Все тела в зависимости от их формы и положения относительно потока обтекаются по-разному. В общем случае зависимость лобового сопротивления для самолета или его крыла в потоке под углом α известна:

.

Известно также, что сопротивление всякого тела в потоке есть сумма сопротивлений от нормальных напряжений (давлений на стенки) и от касательных напряжений (напряжений трения потока о стенки), распределенные по поверхности тела [20]:

, (2.24)

или в безразмерных коэффициентах

. (2.25)

Графически это можно представить так:

Рис. 2.16. Зависимость суммарного коэффициента Cx от угла атаки α

Коэффициент Cx давл зависит от формы тела и может быть сведен либо до минимума, либо наоборот увеличен до максимума. Второе слагаемое Cx тр слабо зависит от формы тела и определяется в основном состоянием поверхности тела.

Критерием удобообтекаемости может быть отношение Cx давл / Cx . Чем меньше отношение, тем более удобообтекаемым является тело. Это значит, что у удобообтекаемого тела лобовое сопротивление возникает в основном от трения среды о поверхность тела (рис. 2.17).

На рисунке 2.17 пластинка является удобообтекаемым телом. Все лобовое сопротивление ее будет определяться трением воздуха о ее поверхность, а нормальные напряжения взаимно уничтожаются. Но поперечно установленная к потоку та же пластинка становится неудобообтекаемым телом (рис. 2.18). В этом случае ее лобовое сопротивление обусловлено давлением, распределенным по ее поверхности.

Рис. 2.17. Тонкая пластинка в продольно обтекаемом потоке

Рис. 2.18. Та же пластинка в поперечно обтекаемом потоке при

На рисунке 2.19 показана зависимость Cx от числа Re для удобообтекаемого тела. Зона I – зона ламинарного течения потока, II – смешанная зона (ламинарная и турбулентная), III – зона турбулентного течения. Точка А – критическая точка при Re = 9·104 – 1,1·105.

Рис. 2.19. Зависимость коэффициента Cx от числа Re для удобообтекаемого тела

На рисунке 2.20 показано неудобообтекаемое тело в потоке в виде шара. Зона I – при Re < 10 – зона без пограничного слоя, среда вязкая; II – 10 < Re <103 – область, где появляется пограничный слой, начало вихрей; III – 103 < Re < 105 – область, где образуются вихри, давление за шаром резко возрастает (скорость падает).

Рис. 2.20. Зависимость коэффициента Cx от числа Re

для неудобообтекаемого тела в виде шара. Шкала Re – логарифмическая

Для целей измерительных приборов (расходомеры, счетчики) используют свойства неудобообтекаемого тела в потоке воздуха, жидкости. При этом выбирают наиболее простое с технологической точки зрения тело – цилиндр, призму, дельта-тело и др. (возможны комбинации тел) [23].

Рис. 2.21. Образование кармановской дорожки

Образование вихрей в одной дорожке мешает их образованию в противоположной стороне. В связи с этим вихри образуются поочередно. Так за миделевым сечением образуются кармановские дорожки шириной h, с отношением постоянным для конкретного тела l/h. Для шара это отношение равно 0,281.

Частота срыва вихрей согласно критерию Струхала равна

, (2.26)

где v – скорость в м/с, d – характерный размер в метрах (диаметр шара, хорда крыла), С – число Струхала.

Для определения расхода жидкости или газа предлагается зависимость:

, (2.27)

где Q – расход, S – площадь наименьшего сечения потока вокруг обтекаемого тела. Но для этого необходимо постоянство коэффициента Струхала как можно при большем Re. Для цилиндра это число может быть 103 < Re < 105.

Кармановские колебания могут использоваться для измерения скорости воздушного потока в диапазоне Re = 300 - 2·105

. (2.28)

Кармановские колебания образуются, например, в потоке за флюгаркой в датчике аэродинамических углов и носят вредный характер. Под действием вихрей флюгарка колеблется, вносит дополнительную погрешность и уменьшает срок службы датчика. При необходимости можно использовать частоту колебаний флюгарки для коррекции метрологических характеристик ДАУ.

Рис. 2.22. Зависимость числа Рейнольдса для течения около круглого цилиндра

Рис. 2.23. Генераторы вихрей

Рис. 2.24. Схемы измерения частоты срыва вихрей

2.7. Принцип аэродинамической интерференции

В данном случае под интерференцией понимается взаимное влияние элементов, частей конструкции самолета [17, 19].

Этот принцип устанавливает аэродинамическое взаимодействие между всеми элементами самолета, между крыльями, фюзеляжем, оперением. Силы этих элементов конструкции самолета суммируются. На этом основании можно отдельно изучать и испытывать эти элементы, а результат суммировать. Это объясняет и правомерность существования отдельной "Аэродинамики крыла" Н.Е. Жуковского, "Аэродинамики органов управления летательного аппарата", "Аэродинамики фюзеляжа", "Аэродинамики корпусов ракет" и др. Однако это не простое сложение характеристик отдельных элементов конструкции самолета. Наоборот, отдельно взятые элементы – корпус, крылья, оперение, рули, – будучи соединенными в единую конструкцию летательного аппарата как бы теряют индивидуальные аэродинамические характеристики и приобретают вследствие интерференции (взаимодействия) новые характеристики. Так, подъемная сила крыла, соединенного с фюзеляжем, увеличивается.

2.8. Гипотеза об отсутствии обратного влияния пограничного слоя на свободный поток

Эта гипотеза утверждает, что параметры внешней части пограничного слоя невязки, а сам пограничный слой вязкий. В связи с этим аэродинамика как наука разделилась на две: "Аэродинамика невязкой идеальной жидкости" и "Аэродинамика пограничного слоя".

Рассматриваются два вида движения: свободного (невязкого) потока и течения в тонком пристеночном слое газа – пограничном слое, где движение рассматривается с учетом трения [19, 24].

2.9. Принцип аддитивности внешних воздействий на летательный аппарат

Аддитивность (лат. – прибавляемый) – свойство величин, состоящее в том, что значение величин, соответствующее целому объекту, равно сумме значений величин соответствующих частей при любом разбиении объекта на части.

Этот принцип допускает отдельное, независимое изучение внешних воздействий на самолет, а результат суммировать. Внешними воздействиями могут быть температура, силы различного происхождения. Суммарные характеристики будут получены путем сложения изучаемых составляющих. Этим принципом пользуются и при определении характеристик приборов и систем при воздействии на них отдельных: вибрации, температуры, ускорений и т.д. Погрешности прибора (системы) складываются как независимые случайные величины [19].

2.10. Классификация летательных аппаратов

Существует несколько способов летания:

Аэростатическое перемещение в тропосфере (шары, дирижабли).

Аэродинамическое движение в воздухе (жидкости) тел, тяжелее воздуха (самолеты, вертолеты, крылатые ракеты).

Баллистическое движение (пуля, снаряд).

Космическое ракетоплавание, основанное на теории ракетодинамики тел с переменной массой.

Перемещение на воздушной подушке.

Перечень летательных аппаратов:

- воздушный шар, дирижабль,

- планер,

- самолет,

- судно на подводных крыльях,

- судно на воздушной подушке,

- экраноплан,

- вертолет,

- ракета крылатая, ракета баллистическая,

- спутник планет, космический корабль.

Тип летательного аппарата, его способ летания, его технические характеристики определяют и технические характеристики аппаратуры – приборов и систем. Этим определяется необходимость глубокого изучения летательных аппаратов. Каждый тип летательного аппарата имеет свои особенности и сферу практического применения.

Воздушные шары и аэростаты основаны на аэростатическом принципе летания в воздушном пространстве. Этот аппарат легче воздуха, всплывает из плотных слоев воздуха к менее плотным слоям над уровнем Земли по закону Архимеда. К положительным свойствам аэростатов относится гигантская подъемная сила, создаваемая за счет большого объема. К его основному недостатку следует отнести слабую управляемость в связи с большой парусностью при больших объемах. Их можно применять только в тихую погоду.

Планер по конструкции аналогичен самолету, имеет все элементы самолета кроме силовой установки. Наилучший способ подъема на высоту – это буксировка с помощью самолета. Дальнейший полет – парение по восходящим и нисходящим воздушным потокам. Планеры используются для обучения пилотов, для приобретения навыков пилотирования, и изучения аэродинамики самолета. Кроме того, планер широко используется в спортивных целях. Может использоваться и в военных целях.

Самолеты можно разделить на сухопутные и гидросамолеты. В свою очередь сухопутные самолеты имеют различное назначение. К ним относятся гражданские самолеты, военные самолеты. По способу взлета самолеты можно разделить на самолеты, взлетающие после аэродинамического разбега и самолеты вертикального взлета.

К гражданским самолетам относятся пассажирские, учебные, санитарные, пожарные, аэросъемочные, спортивные, сельскохозяйственные, грузовые.

К военным самолетам относятся: истребители (для воздушного боя, для истребления самолетов противника, для охраны бомбардировщиков); бомбардировщики (для уничтожения сил противника в его тылу); штурмовики (для уничтожения на земле укреплений, вооружений и огневой силы противника).

Характерной особенностью гидросамолета является то, что местом посадки и взлета является водная среда. (Примером может быть самолет Бе-200).

Как бы промежуточным между сухопутными самолетами и гидросамолетами является самолет-амфибия (А-40). Отличительной особенностью такого самолета является его способность взлетать и садиться как с земли и на землю, так и с воды и на воду. Говорят, что самолет обладает амфибийностью.

Полет всех самолетов (и крылатых ракет, самолетов беспилотников) основан на аэродинамическом способе летания. При этом скорость самолета относительно воздуха создается силовой установкой, а подъемная сила создается крыльями и фюзеляжем по теореме Н.Е. Жуковского.

Спутники Земли и космические корабли перемещаются в мировом пространстве по законам ракетодинамики, в основе которых лежит теория полета ракет с переменной массой, основоположником которой является наш соотечественник Константин Эдуардович Циолковский (17.09.1857 – 19.09.1935 гг.).

В зависимости от типа силовой установки (двигателя) все самолеты можно разделить на следующие группы:

- самолеты с поршневым двигателем – винтомоторная группа – ВМГ;

- самолеты с турбореактивным двигателем – группа ТРД;

- самолеты с турбовинтовым двигателем – группа ТВД;

- самолеты (ракеты) с жидкостно-реактивным двигателем – группа ЖРД [25, 26].

Самолет с поршневым двигателем

До некоторых пор (до 1942 г.) применялись только поршневые двигатели, составляющие вместе с воздушным винтом винтомоторную группу – ВМГ.

Рис. 2.25. Характеристика винтомоторной группы:

а) мощность винта;

б) сила тяги того же двигателя

На рисунке 2.25а показана зависимость мощности винта Nв от скорости полета v, а на рисунке 2.25б – зависимость тяги Pв винта от скорости v. Известно, что , где N – мощность двигателя, ηв – КПД винта. Мощность двигателя мало зависит от скорости полета v, а падение ее при больших скоростях обусловлено падением КПД винта.

Сила тяги равна

. (2.29)

Она уменьшается как по причине возрастания скорости v, так и по причине уменьшения КПД винта. Здесь принято: Pв – сила тяги в кг, N – мощность двигателя в лошадиных силах (л.с.), v – в .

Поршневые двигатели не могли обеспечить самолету больших скоростей полета. На больших скоростях требуется значительное увеличение мощности двигателя. Например, для достижения скорости 1200 км/ч потребуется тяга винта 3500 – 4000 кг. При ηв = 0,7 ‑ 0,8 мощность двигателя должна быть

л.с.

Такой двигатель будет иметь большой вес (около 13000 кг), большие габариты и громоздкий винт.

Есть еще одна существенная причина ограничений по скорости самолета с поршневым двигателем. Речь идет о волновом кризисе винта в потоке воздуха при большой скорости. Наступает режим сверхзвукового обтекания лопастей винта, наступает сильная турбулизация потока. Раньше всего сверхзвуковое обтекание наступает на концах лопастей винта, а дальше распространяется и к комлю его. Происходит "закипание" воздуха, КПД резко падает, винт испытывает сильные колебания и удары. По этой причине ограничиваются скорость полета и надежность силовой установки.

Поршневой двигатель обладает высокой экономичностью, т.е. сравнительно малым удельным расходом топлива Се кг/л.с.час (килограмм топлива на одну лошадиную силу в час). Например, при Се = 0,22 кг/л.с.час и N = 2500 л.с. часовой расход топлива Gтоп Се · N = 0,22·2500 = 550 кг/ч.

Сказанное тут обуславливает целесообразность применения ВМГ на скоростях полета до 600 – 650 км/ч.

Максимальная скорость самолета с ВМГ определяется по формуле (приближенно):

км/ч, (2.30)

где N – мощность двигателя на данной высоте полета в л.с., Δ – относительная плотность воздуха, S – площадь крыла в м2, δ – коэффициент в м2, величина которого зависит от количества двигателей и способа его охлаждения (жидкостное или воздушное) (δ ≈0,13– 0,2) [25].

Максимальная высота полета такого самолета определяется по формуле:

км, (2.31)

где NН – мощность двигателя на расчетной высоте; Нрасч – высота полета, до которой сохраняются работоспособность двигателя без потери мощности; G – полетный вес самолета; S – площадь крыльев; λ – удлинение крыла.

Дальность полета самолета с ВМГ определяется приближенно по формуле:

, км, (2.32)

где Gтоп – вес топлива в кг; vmax – максимальная скорость на данной высоте в км/ч; N – мощность двигателя на той же высоте в л.с.; Се – удельный расход топлива на той же высоте в кг/л.с.час; F – коэффициент, зависящий от числа двигателей (1,38 – для одного, 1,48 – для двух и четырех двигателей).

Длина разбега и длина взлетной дистанции определяется по формуле:

, м, (2.33)

где К = 0,75 для разбега, К = 2,1 для взлетной дистанции.

Посадочная скорость определяется по формуле:

км/ч. (2.34)

Самолет с турбореактивным двигателем

Стремление к получению больших скоростей привело к поиску новых принципов создания тяги летательного аппарата по сравнению с ВМГ. Еще Константин Эдуардович Циолковский (1930 г.) утверждал, что "за эрой аэропланов винтовых должна следовать эра аэропланов реактивных …". В 1937 году был совершен первый полет ракеты с жидкостным реактивным двигателем конструкции С.П. Королева. Первыми в нашей стране серийными самолетами с турбореактивными двигателями были истребители Як-15 конструкции А.С. Яковлева и МиГ-9 конструкции А.И. Микояна и М.И. Гуревича.

Так появились летательные аппараты с турбореактивными двигателями (группа ТРД). Согласно закону об изменении количества движения сила тяги в группе ТРД равна секундному увеличению количества движения газового потока, проходящего через силовую установку и обтекающего его снаружи:

, (2.35)

где v – скорость полета, с5 – скорость вытекающего из сопла газа (м/с); Gв – секундный расход воздуха на входе в двигатель (кг/с); g – ускорение силы тяжести (м/с2).

Рис. 2.26. Изменение мощности (а) и тяги (б) ТРД в зависимости от скорости полета

Из рисунка 2.26 видно, что тяга ТРД незначительно зависит от скорости полета, зато мощность его при этом возрастает. Этим объясняется то обстоятельство, что ТРД заняли господствующее положение в авиации и ракетостроении для полетов на скоростях с 800 … 850 км/ч и выше. Недостатком ТРД по сравнению с ВМГ является плохая экономичность. Удельный расход ТРД Се ≈ 0,8 кг/кг тяги час. Поэтому, например, при тяге P = 3000 кг часовой расход топлива составит:

кг/ч.

Это значит, что часовой расход топлива ТРД значительно выше, чем для поршневых двигателей.

Максимальная скорость полета самолета с ТРД:

, км/ч, (2.36)

где a – скорость звука (м/с) на данной высоте; Mкрит – критическое число М начала волнового кризиса; ∆ – относительная плотность воздуха на высоте полета; Р – тяга двигателя на той же высоте.

Потолок полета самолета определяется ориентировочно по формуле:

, км, (2.37)

где Р0 – тяга у земли; Кмах – максимальное качество самолета, которое может быть равным 14 – 15 (К = Y/Q = Cy/Cx).

Дальность полета самолета:

, (2.38)

где vmax – максимальная скорость на данной высоте в км/ч; РН – тяга на данной высоте в кг; Се – удельный расход топлива в кг/кгтяги час; F1 – коэффициент, равный 1 для истребителя и 1,1 для бомбардировщика.

Длина разбега:

, м. (2.39)

Скорость посадки определяется по формуле:

, км/ч. (2.40)

Самолет с турбовинтовым двигателем.

Стремление найти оптимальный двигатель, который позволил бы летать со скоростью 700 … 900 км/ч, привело к созданию промежуточного двигателя частично со свойствами ВМГ и ТРД. Таким двигателем оказался турбовинтовой двигатель (ТВД).

Рис. 2.27. Зависимость мощности и тяги в ТВД от скорости полета:

а – мощность винта;

б – тяга винта

Мощность, отдаваемая ТВД, равна:

. (2.41)

Суммарная тяга такого двигателя (установки) равна:

.

По экономичности ТВД занимает промежуточное положение между ВМГ и ТРД. Например, при Се = 0,28 кг/л.с. час и N = 3000 л.с. часовой расход топлива равен

км/ч.

Самолет с жидкостно-реактивным двигателем

Что касается установки с жидкостно-реактивным двигателем (ЖРД), то он отличается от турбореактивного двигателя в основном тем, что работает на горючей смеси, окислитель которой находится на борту самолета. В связи с этим тяга его не зависит от высоты полета.

Рис. 2.28. Зависимость мощности (а) и тяги (б) ЖРД от скорости полета

Эти двигатели обладают крайне низкой экономичностью. При Се = 16 кг/кг тяги час и Р = 2000 кг часовой расход топлива равен

кг/ч,

В связи с этим такие двигатели используют короткое время (5…10 мин) в форсажных двигателях. Их преимуществом является независимость от высоты полета, легкость, компактность.

Судно на подводных крыльях

Эффект судна на подводных крыльях заключается в подъеме фюзеляжа судна из воды в воздух. Сопротивление движению судна в этом случае уменьшается пропорционально уменьшению плотности среды движения. Движение в воде заменяются движением в воздухе (в воде остаются только крылья) [26 – 27].

При этом подъемная сила и сила сопротивления возникают по законам аэродинамики по аналогии с самолетом:

, ,

где Сy и Cx – коэффициенты подъемной силы и силы лобового сопротивления, ρ – плотность среды, S – площадь крыла.

Плотность воды в 816 раз больше плотности воздуха при Н = 0 км. Скорость СПК = 60 – 70 км/ч (в 10 раз меньше скорости самолета).

Ограничение по скорости наступает из-за кавитации, ("закипания" воды) на поверхности подводного крыла при скорости 80 км/ч (ориентировочно). Однако это уже скорость почти автомобиля, почти 2 – 3 раза больше скорости движения обычных судов по воде.

Недостаток – слабая устойчивость при больших волнах. Поэтому морские СПК не нашли широкого распространения, хотя попытки к этому имеются.

Впервые СПК появились в Германии (инж. барон Ганс фон Шертель). В 1927 году Шертель организовал фирму "Сукромар Лимитед". В России выдающаяся роль принадлежит Р.Е. Алексееву (1916 – 1980 гг.). В 1957 году было построено СПК "Ракета" на 66 мест, а потом "Волга", "Метеор", "Беларусь", "Чайка". Скорость движения расчетная – 60 ‑ 80 км/ч.

Судно на воздушной подушке

Экранопланы вместе с судами на подводных крыльях и на воздушной подушке образовали новый класс судов на динамических принципах поддержания движения. Эффект экраноплана заключается в использовании сверхмалой высоты полета, в использовании воздушной подушки, экранного эффекта. Оптимальная высота полета Н = 0,5 хорды крыла.

Самолеты и вертолеты тоже летают на малых высотах, особенно вертолет. Но для них малая высота не является оптимальной с точки зрения экономичности режима полета. Это полет по необходимости выполнения целевой задачи.

Одним из примеров использования экранного эффекта является судно на воздушной подушке (СВП).

Подъемная сила у СВП образуется благодаря повышенному аэростатическому давлению в пространстве между корпусом аппарата и опорной поверхностью (вода, Земля). Давление создается нагнетателями подъема. Для этого используется часть бортовой мощности (около 30 %) независимо от скорости. При этом давление на корпусе создается до 100 Па (0,75 мм рт. ст.).

Рис. 2.29. Принцип взлета СВП

К особенностям судна на воздушной подушке относятся: относительно высокая скорость полета (≈ 100 км/ч), способность летать над водой, над землей на малой высоте, отсутствие необходимости в дорогах, отсутствие необходимости в аэродромах, большая грузоподъемность, высокая экономичность, отсутствие вредного воздействия на воду, землю, высокая безопасность.

Экранный эффект – это очень крутая зависимость подъемной силы Y крыла от расстояния днища СВП до подстилающей поверхности ,

Рис. 2.30. Зависимость подъемной силы от относительной высоты полета

,

где H – высота полета. При ≥ 0,7 экранный эффект пропадает.

Экраноплан

Экраноплан – это летательный аппарат, который для перемещения использует статическую воздушную подушку на малых скоростях и динамическую воздушную подушку на больших скоростях.

Внешне ЭП (экраноплан) похож на самолет с крыльями малого удлинения, которые заканчиваются концевыми шайбами. Они имеют носовой и кормовой двигатели. При разгоне носовой двигатель работает в режиме поддува, направляя газовую струю под крыло для создания статической воздушной подушки. Она уменьшает гидродинамическое сопротивление. После отрыва судна от подстилающей поверхности поддув прекращается и статическая подушка заменяется при движении динамической подушкой за счет скоростного напора. Под крылом происходит подтормаживание воздуха, увеличение давления на нижнюю поверхность профиля. Так образуется динамическая воздушная подушка в отличие от статической подушки в СВП. При очень малых высотах полета давление может достигать давления скоростного напора , но практически используется 40 – 50 % его из-за колебаний поверхности под судном.

Попытка разработать летательный аппарат типа "экраноплан" была осуществлена еще в 30-х годах XX века. Однако практическое применение этот аппарат нашел только в 60-х годах благодаря усилиям ЦКБ под руководством Р.Е. Алексеева в Нижнем Новгороде. Появились такие экранопланы как: См-5 (1963 г.) Км (1967 г.), Орленок (1979 г.), Лунь (1986 г.).

Условно все экранопланы делятся на группы:

Малые ЭП: длина судна до 10 м, дальность полета 300 – 500 км, скорость полета 100 – 200 км/ч, высота волны воды до 30 см, число пассажиров – несколько человек. Примером в этой группе может быть "Волга-2" со скоростью до 120 км/ч.

Средние ЭП: масса судна до 300 т, дальность полета до 2000 км, скорость полета до 200 км/ч, высота волны воды до 2 м, число пассажиров до 150 – 200 человек.

Большие ЭП: масса судна 500 – 550 т, дальность полета до 10000 км, скорость полета 600 – 800 км/ч, высота волны воды 6 – 8 м.

Этот новый вид судна, по мнению специалистов (особенно военных), имеет большие перспективы. Не случайно, что в США был объявлен конкурс по созданию морского ЭП со скоростью перемещения до 180 узлов с большой грузоподъемностью. С этой задачей пока не справилась ни одна фирма США.

Есть сведения, что в 1989 году в Ленинграде был создан ЭП под маркой РКВП, ракетный корабль со скоростью перемещения более 110 км/ч. Однако с большей сенсацией американцы сообщили, что зафиксировали движение морского судна (надводного) со скоростью 500 км/ч. Если это так, то свершилось чудо. Появились сведения в российской печати, что такое судно действительно есть, и его марка – БОРА.

Какие же особенности требований к аппаратуре на ЭП:

Повышенная точность и надежность управления по относительной высоте , углу крена γ, углу тангажа υ, скорости полета v в связи с тем, что высота полета сверх малая.

Повышенные требования по быстродействию аппаратуры управления и контроля.

При расчетах метрологических характеристик рекомендуется принимать мгновенное, а не среднее значение скорости полета.

С целью достижения максимальной достоверности и безопасности полета за погрешность параметра принимается ее максимально возможное значение.

Для ориентации приведена таблица 2.4 параметров для экраноплана [27].

Таблица 2.4

Параметр

Диапазон

Погрешность

Постоянные времени, сек

Высота полета, м

0 - 15

0,1

0,05

Крен, град

± 20

0,1

0,1

Тангаж, град

- 10 + 15

0,1

0,2

vy, , м/с

± 1

0,01

0,05

, град/с

± 5

0,03

0,05

υ, град/с

± 5

0,03

0,1

Воздушная скорость v, м/с

0 - 200

0,5

0,1

Путевая скорость w, м/с

0 - 200

0,5

0,5

Угол скольжения, град

± 10

0,3

0,2

Курсовой угол ψ, град

0 - 360

0,3

0,2

Вертолет

Вертолет среди всех видов летательных аппаратов отличается своими оригинальными режимами полета:

Способностью взлетать и приземляться практически в любом месте, на необорудованной площадке, на крыше дома, на подвижное морское судно, на автомобиль и т.д.;

Висеть над определенной точкой Земли, меняя ее при выполнении работ на околонулевых скоростях;

Перемещаться во всех направлениях в пространстве – вверх-вниз, вперед-назад, вправо-влево, поворачиваться вокруг любой своей оси;

Совершать полет со снижением при отказе двигателей на режиме авторотации.

Эти свойства определяют области практического применения вертолета в различных целях народного хозяйства (строительство, опыление полей, перевозка грузов), в военных целях.

Эти же свойства определяют и особенности приборов и систем, обеспечивающих режимы полета вертолета [28 – 29].

Особенности пилотажно-навигационного оборудования обусловлены принципом создания подъемной силы, режимами полета и характером обтекания фюзеляжа воздушным потоком, в том числе потоком от несущего винта (НВ).

Подъемная и движущая сила на вертолете создается одним и тем же элементом конструкции – несущим винтом, омывающим в процессе работы весь фюзеляж (на малых скоростях в особенности). В связи с этим на вертолете практически отсутствуют места на фюзеляже с установившемся воздушным потоком, что резко осложняет восприятие давления Рп, Рст и температуры Тн.

В условиях возмущенного потока необходимо измерять скорости полета во всех направлениях, начиная с нуля; аэродинамический угол атаки, высоту полета, полное, статическое и динамическое давления, температуру наружного воздуха (Тн).

С учетом этих особенностей строятся все пилотажно-навигационные приборы и системы, измерительно-вычислительные комплексы типа СЭИ, КИСС, СВС, СПКР.

Рассмотрим, как же образуется полезная тяга вертолета.

Несущий винт состоит из нескольких (3, 6, 8) лопастей, вращающихся вокруг оси над фюзеляжем. Фюзеляж висит на винте. Каждая лопасть в отдельности представляет собой крыло. Ее подъемная сила образуется по известным законам аэродинамики, когда подъемная сила , где α – угол лопасти по отношению к вектору потока воздуха. Однако приближенно можно представить, что вместе все лопасти представляют собой вращающийся диск. В этом случае тяга несущего винта (НВ) определяется так:

, (2.42)

где Ст – коэффициент тяги; F – ометаемая площадь диска НВ; ρ – плотность воздуха; ω – угловая частота вращения НВ; R – радиус НВ; v – скорость перемещения конца лопасти, v = ωR.

Частота НВ практически постоянна, редукция от двигателя постоянна, т.е. ωR постоянна. Предельное критическое значение v = ωR ограничивается критическим значением числа М на оконечности лопасти:

, или ,

где а – скорость звука. За пределами vкр наступает волновой кризис, подъемная сила падает.

Практически м/с (220·3,6 ≤ ≈ 800 км/ч). При этом под скоростью подразумевается результирующая скорость vрез = ωR ± vполета. Скорость полета вертолета зависит от угла атаки лопасти и угла наклона диска несущего винта. В формуле (2.42) скрыта зависимость тяги от скорости полета вертолета, т.е. поступательного движения НВ относительно воздуха. Практически тяга НВ есть функция многих параметров:

, (2.43)

где χ – коэффициент использования площади НВ, ; vв – скорость вертолета, поступательная; v1 – скорость подсасывания; α – угол атаки лопасти; F – площадь НВ.

Для разных режимов полета вертолета тяга определяется так:

– для режима висения, (2.44)

– для косого движения, (2.45)

где v1 – скорость подсасывания или средняя индуктивная скорость в плоскости вращения НВ; vв – скорость вертолета.

В режиме висения тяга Т и вес G вертолета равны между собой, т.е. Т G, откуда имеем:

. (2.44)

Рис. 2.31. Образование тяги вертолета:

v1 – скорость подсасывания;

v2 – скорость отбрасывания;

v2 = 2v1

Винт конкретного типа вертолета имеет определенную удельную нагрузку на ометаемую площадь, которая определяется как р = G/F, кг/м2. Зная, что скорость отбрасывания v2 = 2v1, по формуле (2.46) можно определить ее минимальное значение на режиме висения, таблица 2.5:

Таблица 2.5

Тип вертолета

Ми-1

Ми-2

Ми-8

Ми-6

Тяжелый

Удельная нагрузка р, кг/м2

14,2

21,5

31,2

42,1

60

v2, м/с при Н = 0

15,6

19,0

23,0

27,0

32,2

v2, м/с при Н = 1000 м

16,4

20,0

24,0

28,2

33,8

v2, м/с при Н = 2000 м

17,2

20,8

25,2

29,6

35,4

Важно отметить, что минимальные скорости отбрасывания, приведенные в таблице 2.5 достаточно велики (от 51,12 до 127,4 км/ч), что дает уверенность в точном измерении отбрасываемого потока воздуха известными способами. Этот факт нам пригодится при исследовании специальных измерителей малых скоростей.

Характерным отличием лопасти НВ от крыла самолета является ее большое удлинение λ. Так, для Ми-8 λ = 20,47; для Ми-6 λ = 17,5; для Ка-32 λ = 16,56. Как уже было сказано выше, вертолеты могут быть как одноосные, так и двухосные. Для двухосного вертолета характерна его компактность, минимальные продольные габариты. В связи с этим момент инерции вертолета с двухосным винтом относительно вертикальной оси Jy-y в 1,5 – 2 раза меньше, чем у одноосного вертолета.

Спутник Земли

Как было сказано выше, космическое ракетоплавание основывается на теории ракетодинамики тел с переменной массой, когда справедлива формула скорости, обоснованная Э.К. Циолковским:

, (2.47)

где v – скорость ракеты; v1 – скорость истечения газов двигателя ракеты; m1 – масса ракеты; m2 – масса топлива ракеты.

Чтобы вывести спутник на круговую орбиту, ему нужно придать такую скорость движения по орбите, чтобы центробежное ускорение спутника уравновесилась притяжением его к Земле. Тогда спутник окажется в состоянии невесомости и будет двигаться по траектории, для которой выполняется условие равновесия [30]:

, (2.48)

где v – линейная скорость движения спутника по орбите, так называемая первая космическая скорость; Н – высота спутника над уровнем Земли; g – ускорение силы тяжести на этой высоте; R – радиус Земли. принимается, что ускорение силы тяжести обратно пропорционально квадрату расстояния от центра Земли:

, (2.49)

где g0 – ускорение у поверхности Земли, тогда:

, (2.50)

или . (2.51)

Если перейти к угловой скорости ω вращения спутника по круговой орбите, то:

. (2.52)

Период одного оборота:

. (2.53)

Положив в (2.51) Н=0, получим первую космическую скорость у поверхности Земли:

. (2.54)

Подставляя в (2.51) и (2.52) различные высоты Н, получим таблицу скоростей (таблица 2.6) движения спутников по круговым орбитам на различных высотах.

Таблица 2.6

Н, км

0

100

200

300

400

500

1000

10000

35870

v, км/с

7,91

7,84

7,78

7,72

7,66

7,61

7,34

4,76

3,06

ω, об/сутки

17,0

16,6

16,2

15,8

15,5

15,2

13,8

3,8

1

Из таблицы видно, что при Н = 35870 км спутник будет делать один оборот в сутки, т.е. он будет вращаться синхронно с Землей. Он будет "висеть" над определенной точкой Земли.

Чтобы спутнику покинуть Землю, он должен иметь скорость большую, чем первая космическая скорость:

, (2.55)

где Н – высота, с которой спутник уходит от Земли.

Если спутник стартует с поверхности Земли (Н = 0), то:

. (2.56)

Чем больше Н, тем скорость w меньше. В связи с этим спутник выгоднее запускать с тяжелых спутников Земли, которые вращаются вокруг Земли на расстоянии от нее Н.

Пока спутники запускаются только с космодромов, расположенных в определенных точках Земли и вращаются на орбите, наклоненной под определенным углом к плоскости экватора. Наши российские космодромы Байконур, Плесецк и Свободный слишком удалены от экватора. Поэтому наклонение орбит спутников были не менее 51 градуса.

Американские космодромы находятся ближе к экватору и ближе к океану, куда можно сбрасывать отработанные ступени аппаратов.

"Северность" наших космодромов вынуждает больше тратить топлива при выводе аппаратуры, так как меньше работает эффект вращения Земли. Это приводит к удорожанию запусков спутников. В связи с большими наклонениями орбит наших спутников южные широты Земли нами не могут контролироваться. Там полное господство американцев. Тут можно усмотреть коммерческий и военный аспекты вопроса. С этим Россия мириться не может и поэтому идет поиск выхода из этой ситуации.

Сейчас во всем мире идет борьба за обладание мотором будущего, гиперзвуковым прямоточным воздушно-реактивным двигателем – ГПВРД. Победитель приобретет мощное оружие и дешевое средство для вывода грузов на низкие орбиты. Конструктивно двигатель ГПВРД представляет собой открытую с двух сторон трубу с сужениями по сечению. С помощью вспомогательного "движка" он разгоняется до большой скорости и воздух в сужении сильно сжимается без всякой турбины. В нужном месте впрыскивается топливо и ГПВРД развивает фантастическую тягу, способную разгонять аппарат до скорости с М = 15 - 35, тогда как даже самые быстроходные ракеты достигают М = 6 – 7.

Аппарату с таким двигателем не нужно с собой возить окислитель (кислород) для горения топлива на малых высотах. Этим он отличается от аппарата с ЖРД.

Горючим в ГПВРД служит экологически чистое топливо – жидкий водород, выхлоп от сгорания которого – водяной пар. Сдерживающим фактором в разработке ГПВРД является отсутствие средств разгона воздуха или самого аппарата в процессе исследований до скорости более М = 10.

А пока НПО "Молния" во главе с его главным конструктором Глебом Лазино-Лазинским предлагает проект МАКС – уникальную систему, способную с малыми затратами осваивать ближний космос. В качестве носителя-разгонщика предлагается использовать самолет Ан-225 (Мрия).

В заключение второй главы приведем схему диапазонов скоростей рассмотренных летательных аппаратов (рис. 2.32)

Рис. 2.32 Диапазоны скоростей летательных аппаратов

Глава 3

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ И ВЫСОТЫ ПОЛЕТА

3.1. Общие определения

Современный самолет оборудован множеством технических устройств для определения его местоположения, для управления воздушным движением, для решения светотехнических задач, а также для контроля работы силовой установки. В [4] даются общие определения оборудования по назначению.

Комплекс – совокупность информационных систем, вычислительно-програм­миру­ющих средств, систем индикации, сигнализации и управления, предназначенных для совместного выполнения группы задач общего функционального назначения. Примером комплекса может быть информационный комплекс высотно-скоростных параметров (ИКВСП) для самолета Як-42.

Система – совокупность взаимосвязанных изделий авиационной техники, предназначенных для выполнения заданных функций. Характерным примером системы может быть система воздушных сигналов – СВС.

Прибор – устройство, имеющее самостоятельное эксплуатационное значение и обеспечивающее измерение и индикацию одного или нескольких параметров. Характерными примерами являются указатель скорости УС-2, измеряющий и индицирующий (указывающий) значение приборной скорости; указатель угла атаки и перегрузки УАП-5. Показания прибора воспринимаются человеком с помощью органов чувств.

Индикатор – средство отображения информации о количественном или качественном значении информации. Примером количественного индикатора может быть циферблат со шкалой и стрелкой как у прибора УС-2. Примером качественного индикатора может быть индикатор, отображающий информацию по принципу "не более заданного", "не меньше заданного", "находится в пределах заданного". Такая индикация применяется в системе безопасности СПКР. Силуэт самолета на фоне неподвижной шкалы тоже является качественной индикацией.

Сигнализатор – прибор, обеспечивающий отображение о соответствии или несоответствии параметра, системы или объекта требуемому значению или состоянию в виде визуальных, звуковых и тактильных сигналов. Примерами могут быть светосигнализаторы ТС-3, ТС-5, содержащие в своих табло определенные надписи.

Датчик – измерительное устройство для выработки сигнала о текущем значении измеряемого параметра. В отличие от прибора сигналы датчика воздействуют на звенья системы, минуя человека.

Основное оборудование – обязательное оборудование, необходимое для обеспечения основных заданных функций в ожидаемых условиях эксплуатации.

Резервное оборудование – обязательное оборудование, необходимое для обеспечения нормального выполнения ограниченного количества функций с приемлемыми точностными характеристиками при отказе отдельных видов основного оборудования или невозможности его использования. К такому оборудованию на борту гражданского самолета относятся механический указатель скорости УС-2, магнитный компас КИ-13, механический высотомер, механический вариометр. Они применяются на тот случай, когда отказывает по каким-либо причинам экранная основная индикация в системе СЭИ.

Все оборудование самолета по назначению можно классифицировать на следующие группы согласно [4]: пилотажно-навигационное оборудование (ПНО); средства контроля работы силовой установки; радиотехническое оборудование навигации, посадки и УВД; светотехническое оборудование, радиосвязное оборудование, электротехническое оборудование, оборудование внутрикабинной сигнализации.

Пилотажно-навигационное оборудование – это совокупность измерительных, вычислительных и управляющих систем и устройств и систем отображения информации на борту самолета, предназначенных для решения задач пилотирования, навигации и самолетовождения в целом от взлета до посадки и выдачи информации потребителям. К физическим параметрам ПНО относятся: географическая широта; географическая долгота; высота полета; скорость полета; вертикальная скорость; угол курса; угол тангажа; угол крена; угловые скорости вращения самолета вокруг осей x, y, z; линейные ускорения вдоль осей x, y, z.

Для индикации основной информации ПНО на современных самолетах типа Ту-204 устанавливаются комплексные пилотажные индикаторы КПИ для первого и второго пилотов. Количество образцов каждого типа оборудования, каждого типа самолета должно быть минимальным, но достаточным для надежного полета в ожидаемых условиях [4]. Технические требования, нормы и методы испытаний ПНО изложены для гражданских самолетов и вертолетов в приложениях восемь к НЛГС и НЛГВ [5, 7]. Из состава ПНО подробнее рассмотрим измерители скорости полета.

Классификация скоростей полета

Согласно нормам НЛГС и сложившейся практике при пилотировании и навигации самолетов различают следующие скорости полета: истинную воздушную, путевую, вертикальную, относительную истинную воздушную скорость (число М), приборную скорость, индикаторную земную скорость, индикаторную скорость [4, 13, 14].

Истинная воздушная vист – это скорость движения самолета относительно воздушной среды.

Путевая скорость w – это горизонтальная составляющая скорости движения самолета относительно Земли (рис. 3.1).

Рис. 3.1. Навигационный треугольник скоростей:

vг – горизонтальная составляющая vист ; vв – скорость ветра (горизонтальная составляющая); w – путевая скорость; γ – истинный курс; ψ – угол сноса; β – путевой угол;

δ – направление ветра; ε – угол ветра

Из навигационного треугольника видно, что путевая скорость равна геометрической сумме горизонтальных составляющих vист и скорости ветра vв:

. (3.1)

Вертикальная скорость vН – это вертикальная составляющая скорости движения самолета относительно Земли или скорость изменения истинной высоты

. (3.2)

Относительная истинная воздушная скорость – это скорость истинная, отнесенная к скорости звука при данной температуре. Ее называют числом М (число Маха):

. (3.3)

Приборная скорость – скорость, которую показывает указатель скорости, проградуированный по разности между полным и статическим давлениями воздуха

, (3.4)

где Pп берется с учетом сжимаемости воздуха.

Индикаторная земная скорость – приборная скорость, исправленная на инструментальную погрешность и аэродинамическую поправку:

. (3.5)

Индикаторная скорость – индикаторная земная скорость, исправленная на поправку на сжимаемость, связанную с отличием давления воздуха от стандартного давления на уровне моря:

. (3.6)

Истинная воздушная скорость связана с индикаторной скоростью следующим соотношением:

, (3.7)

где ρН – плотность воздуха на высоте полета Н; ρ0 – плотность воздуха стандартная на уровне моря.

Часто, в технической литературе, не делается различие между приборной и индикаторной скоростями. При теоретических расчетах имеют в виду индикаторную скорость. Приборная (индикаторная) скорость является сугубо пилотажным параметром. Особенно ответственно и часто используется этот параметр на таких режимах движения самолета как разбег, взлет и посадка. На каждом этапе движения самолета нормами НЛГС и ИКАО присваиваются характерные значения приборной скорости, которые должны быть выдержаны из условия обеспечения безопасности. В связи с этим существует стандартная номенклатура скоростей [4]:

- минимальная эволютивная скорость разбега vmin ЭР (vMCG) есть скорость, на которой при внезапном отказе критического двигателя должна обеспечиваться возможность управления самолетом с помощью аэродинамических органов управления для поддержания прямолинейного движения самолета (в скобках приведены обозначения, принятые в ИКАО);

- минимальная эволютивная скорость взлета vmin ЭВ (vMCA) есть скорость, на которой при внезапном отказе критического двигателя должна обеспечиваться возможность управления самолетом с помощью аэродинамических органов управления для поддержания прямолинейного движения самолета;

- минимальная скорость отрыва vmin ОТР (vMU) устанавливается для всех принятых для взлета конфигураций самолета в диапазоне центровок, установленных регламентом летной эксплуатации (РЛЭ). При этом угол атаки не должен превышать допустимое значение αдоп;

vОТК (vEF) – скорость в момент отказа двигателя;

- скорость принятия решения v1 – это скорость разбега самолета, на которой возможно как безопасное прекращение, так и безопасное продолжение взлета. Величина этой скорости устанавливается в РЛЭ и должна удовлетворять следующим условиям: v1vminЭР; v1vп.ст;

- скорость в момент подъема передней стойки шасси vп.ст – скорость начала отклонения штурвала в направлении "на себя" для увеличения угла тангажа на разбеге;

- безопасная скорость взлета v2 должна быть не менее чем: 1,2vС1 при взлетной конфигурации; 1,1vminЭВ; 1,08vαдоп тоже при взлетной конфигурации;

- скорость отрыва vОТР (vLOF) – скорость самолета в момент отрыва основных его стоек шасси от поверхности ВПП по окончании разбега при взлете;

- скорость в момент начала уборки механизации на взлете v3;

- скорость при полетной конфигурации на взлете v4. Она должна быть не менее чем 1,3vС1 и 1,2vminЭВ;

- минимальная эволютивная скорость захода на посадку vminЭП (vMCL) – скорость, на которой при внезапном отказе критического двигателя должна обеспечиваться возможность управления самолетом с помощью только аэродинамических органов управления;

- максимальная скорость захода на посадку vЗП max;

- скорость захода на посадку vЗП max(vREF);

vC(vS) – скорость сваливания, минимальная скорость самолета при торможении до угла атаки αпред;

vС1 (vS1) – скорость сваливания самолета при работе двигателей в режиме малого газа;

vαдоп (vСy доп) скорость при допустимом угле атаки при ny = 1;

vmaxЭ – максимальная эксплуатационная скорость. Эту скорость пилот в нормальной эксплуатации не должен преднамеренно превышать при всех режимах полета;

vmaxmax – расчетная предельная скорость. Она устанавливается исходя из возможности непреднамеренного ее превышения. vmaxmax - vmax ≥ 50 км/ч. При превышении этой скорости не исключается катастрофическая особая ситуация.

3.2. Прибор для измерения индикаторной (приборной) скорости

Указатель приборной скорости применяется в качестве пилотажного прибора для измерения аэродинамических сил, действующих на самолет в полете. Известно (2.18), что аэродинамическая подъемная сила определяется формулой

.

При увеличении угла атаки α подъемная сила увеличивается вплоть до его предельного значения. Чем больше угол атаки, тем меньше необходима скорость для удержания самолета в воздухе. Как следует из параграфа 3.1 каждому режиму полета соответствует определенное минимальное значение скорости, при котором самолет еще может держаться в воздухе. Например, условием горизонтального полета является равенство веса самолета и подъемной силы

,

где G – вес самолета. Отсюда находим скорость горизонтального полета

.

Указатель приборной скорости является одним из важнейших пилотажных приборов, он дает летчику возможность предотвратить падение самолета на малых скоростях и разрушение его на больших скоростях из-за чрезмерно больших аэродинамических сил. По физическому смыслу указатель приборной скорости измеряет не скорость, а разность между полным и статическим давлениями (3.4), или скоростной напор встречного воздуха, который зависит и от скорости, и от плотности воздуха. Поскольку летчику привычнее и легче запомнить характерные значения скорости, а не давления скоростного напора, то указатель тарируется в единицах скорости.

По определению (3.4) индикаторная (приборная) скорость основана на манометрическом методе, то есть на измерении разности между полным и статическим давлением [13 ‑ 14].

Рис. 3.2. Цилиндрическое тело в потоке воздуха

Зависимость между скоростью, полным и статическим давлениями определяется с помощью уравнения Бернулли, применяемого к воздушному потоку, воспринимаемому приемником воздушного давления (рис. 3.2). В критической точке 2 скорость воздуха падает до нуля. Напишем это уравнение, не углубляясь в вывод его [14], для случая несжимаемого воздуха:

, (3.8)

где v1 и v2 – скорость потока в сечениях 1 и 2 в м/с; P1 и P2 – давления воздуха в сечениях 1 и 2 в кг/м2; ρ1 и ρ2 – плотность воздуха в сечениях 1 и 2 в кг с24.

Так как сечение 1 взято в невозмущенной среде, то скорость v1 равна истинной воздушной скорости vист, давление P1 равно статическому давлению Pст. Давление P2 в точке полного торможения равно полному давлению Pп, так как в этой точке скорость v2 равна нулю. Учитывая, что для несжимаемой среды ρ1 = ρ2 = ρ, после соответствующей замены в уравнении (3.8), получим

(3.9)

или кг/м2. (3.10)

С учетом сжимаемости потока воздуха уравнение (3.10) принимает вид:

или окончательно , (3.11)

где ; qсж – скоростной напор с учетом сжимаемости воздуха.

Рис. 3.3. Зависимость давления Pдин от скорости потока:

1 – без учета сжимаемости воздуха; 2 – с учетом сжимаемости воздуха

Из рисунка 3.3 видно, что учет сжимаемости потока приводит к дополнительному увеличению динамического давления (линия 2). При этом зависимость динамического давления от параметров воздушного потока имеет вид:

, (3.12)

где k – отношение теплоемкостей; g – ускорение силы тяжести; R – газовая постоянная, равная 29,27 м/град; Т – температура невозмущенной атмосферы в оК. По формуле (3.12) тарируются указатели индикаторной и истинной воздушной скорости.

Для тарировки указателя индикаторной скорости принимаются значения, соответствующие нормальным условиям на уровне моря: Рст Ро ст = 760 мм рт. ст. (10332,276 кг/м2), Т = То = 288 оК (t = +15 оС), = 29,27 м/град, массовая плотность ρо = 0,124966 кг с24, k = 1,405. После этого оказывается, что индикаторная скорость по формулам (3.11) и (3.12) зависит только от динамического давления Рдин. Для практического пользования существуют стандартные таблицы, по которым для каждой скорости можно определить значение динамического давления [33].

Следует особое внимание обратить на тот факт, что показания указателя приборной скорости не зависят от статического давления, а значит и от высоты полета самолета. Говорят в связи с этим, что указатель (а также датчик и сигнализатор) приборной (приборной) скорости не имеет методической погрешности от изменения высоты полета. Это ценное качество прибора, обеспечивающего безопасность полета независимо от высоты. Важно, чтобы всегда было необходимое значение скоростного напора на любой высоте.

На рис. 3.4 представлена принципиальная схема указателя приборной скорости с раздельными приемниками давлений Рп и Рст. Полное давление Рп = Рд + Рст поступает в герметичную полость манометрической коробки 5 от приемника 7 через пневмопровод 6. В герметичную полость корпуса 3 от приемника 1 через пневмопровод 2 поступает давление Рст . Под действием разности давлений Рп - Рст = Рд + Рст - Рст = Рд мембрана манометрической коробки прогибается и поворачивает стрелку относительно индикатора – шкалы 4.

Рис. 3.4. Принципиальная схема указателя приборной скорости: 1 – приемник статического давления Рст; 2 – пневмопровод статического давления; 3 – корпус; 4 – индикатор; 5 – манометрическая коробка; 6 – пневмопровод полного давления; 7 – приемник полного давления Рп

Рис. 3.5. Структурная схема указателя приборной скорости: 1 – приемник давлений Рп и Рст; 2 – пневмопровод Рп; 3 – пневмопровод Рст; 4 – отстойники-фильтры канала Рп; 5 – отстойники-фильтры канала Рст; 6 – полость коробки; 7 – полость корпуса; 8 – условное звено образования динамического давления Рд; 9 – решающее устройство; 10 – индикатор

На рисунке 3.5 представлена структурная схема указателя приборной скорости, составленная по его принципиальной схеме (рис. 3.4). Рассмотрим подробнее роль каждого звена в работе указателя индикаторной скорости.

Приемник полного давления

Рис. 3.6. Характер обтекания

цилиндра потоком воздуха

Рис. 3.7. Распределение скоростного напора по длине ППД

Для работы указателя индикаторной скорости по принципу его действия необходимо воспринять в полете полное и статическое давления. В практике авиаприборостроения имеют место применение отдельных приемников полного и статического давлений (рис. 3.4). Давления необходимо воспринимать точно, так как динамическое давление зависит от скорости в квадрате.

Приемник полного давления (ППД) предназначен для восприятия только полного давления встречного потока воздуха. Под понятием "полное давление" подразумевается давление, приходящееся на единицу поверхности тела, плоскость которого перпендикулярна направлению набегающего потока. Для ППД применяется цилиндрическое тело, в центре которого делается сквозное отверстие.

Из рисунков 3.6 и 3.7 видно, что полное торможение набегающего потока воздуха будет только в точке А. Если в цилиндре в районе точки А сделать отверстие, то вдоль ее полости установится давление, равное полному Рп = Рст + Рд. Как всякий инструмент, ППД обладает погрешностью восприятия Рп, связанной с несовершенством его конструкции.

Из самого определения полного давления следует, что лучшим расположением ППД относительно потока воздуха является то, когда плоскость сечения входного отверстия приемника будет перпендикулярна вектору скорости. При этом погрешность приемника будет вызвана только потерями потока в полости канала Рп (рис. 3.8). Это условие установки равносильно тому, когда продольная ось приемника ППД совпадает с направлением воздушного потока.

Но даже в этом случае приемник обладает погрешностью порядка 2 %, которая определяется как отношение абсолютной величины погрешности ΔРп к скоростному напору 0,5ρv2.

Рис. 3.8. Зависимость коэффициента ξ приемника ППД от скорости при α = β = 0

В этих условиях формулу (3.11) можно переписать в виде

, (3.13)

где ξ – коэффициент приемника при α = β = 0. Если же установка ППД такова, когда α ≠ 0, β ≠ 0, то появляются дополнительные угловые погрешности ΔРп = ± ΔРп f(α) и ΔРп = ΔРп f(β). Следующей причиной появления погрешности ППД является скос потока воздуха в месте установки приемника на борту самолета. Эта погрешность нормируется НЛГС [4] в пределах не более 10 км/ч или 3 % (в зависимости от того, что больше) во всем диапазоне измерения скорости. За счет выбора места установки на борту самолета, за счет конструкторских приемов и тарировки в аэродинамических трубах погрешность ППД можно свести до ± (0,005 – 0,01)q.

Диапазон скоростей от 40 до 1100 км/ч; масса 0,17 кг; погрешность в диапазоне скоростей до 150 км/ч не более ± 0,05q при углах α = β = ± 25о; погрешность при скоростях свыше 150 км/ч и углах α = β = ± 20о не более ± 0,025q; обогрев постоянным током мощностью до 135 Вт.

Рис. 3.9. Конструкция приемника ППД-4: 1 – наконечник; 2 – дренажное отверстие;

3 – обогревательный элемент; 4 – отверстие; 5 – щека; 6 – основание; 7 – розетка; 8 – вилка; 9 – провод; 10 – штуцер

Рис. 3.10. Внешний вид приемника полного давления ППД-9В

Приемник статического давления

Под статическим давлением понимают давление, которое существовало бы в данной точке невозмущенной прибором среды, если бы прибор двигался со скоростью потока. Статическое давление в покоящейся среде называется барометрическим или атмосферным давлением и измеряется барометром. Оно измеряется как абсолютное давление, отсчитываемое от абсолютного нуля давления. Для измерения статического давления Рст необходим прибор такой конструкции, которая не искажала бы поток в исследуемой точке. При измерении давления Рст прибор движется относительно воздуха, а это согласно законам аэродинамики приводит к возмущению воздуха. При этом форма прибора – приемника Рст играет основную роль на точность измерения. Измеренное давление будет представлять собой сумму из давления в невозмущенном прибором потоке и дополнительного давления, вызванного обтеканием прибора, и зависит от его формы. Условия обтекания прибора могут быть таковы, что измеренное давление может быть больше или меньше истинного его значения (рис. 3.11).

Рис. 3.11. Распределение коэффициента давления для типичного дозвукового распределения по линии фюзеляжа самолета: 1 – только по свободному фюзеляжу; 2 – по фюзеляжу вместе с плоскостями и хвостовым оперением

Наиболее часто для измерения Рст применяется статический зонд (статический крючок). Он представляет собой пустотелую цилиндрическую трубку диаметром d с обтекаемым закрытым носком.

Рис. 3.12. Статический зонд:

1 – пустотелый цилиндр;

2 – державка цилиндра;

3 – статические отверстия

На боковой поверхности трубки имеются отверстия небольшого диаметра. Для повышения точности измерения в приборе увеличивают расстояние l1 от приемных отверстий до носка и в другую сторону – l2 до держалки. Рекомендуются такие соотношения: l1 = 3d, l2 = 8δ [14, 34].

В авиации часто роль пустотелой цилиндрической трубки используется сам фюзеляж самолета (на дозвуке), в котором делают приемные отверстия (рис. 3.13).

Рис. 3.13. Приемное отверстие для измерения статического давления на поверхности обтекаемого тела (фюзеляжа)

Рекомендуется выдерживать соотношение h/d ≥ 3, диаметр отверстия желательно иметь небольшим, примерно 0,2 – 0,5 мм.

Рис. 3.14. Плиточный приемник статического давления:

1 – плита с отверстиями;

2 – корпус;

3 – компенсатор

Для удобства и надежности восприятия Рст вместо отверстий в фюзеляже применяется стандартная плита с отверстиями. Вместе с корпусом она образует прибор для восприятия статического давления (рис. 3.14). На фюзеляже выбирают такие места для установки плиточного приемника, где наименьшие отклонения линии 2 на рис. 3.11 от средней линии 0-0. Плита приемника устанавливается на самолете заподлицо с обшивкой.

Рис. 3.15. Внешний вид плиточного приемника статического давления ПДС-В3 диапазон скоростей при восприятии Рст до 450 км/ч; масса 0,25 кг; обогрев напряжением постоянного тока 27 В при мощности до 60 Вт

Кроме рассмотренных приемников Рп и Рст широкое применение в авиации нашли комбинированные приемники, которые называются ПВД. В этом приборе совмещены два прибора: приемники Рп и Рст (рис. 3.16). Раздельные приемники применяются в основном на дозвуковой скорости полета. На сверхзвуковых скоростях полета обтекание фюзеляжа настолько сложное и непредсказуемое, что невозможно найти места для установки приемников давлений.

Рис. 3.16. Принципиальная схема приемника типа ПВД: 1 – камера полного давления; 2 – отверстие камеры статического давления; 3 – камера статического давления; 4 – трубопровод статического давления; 5 – трубопровод полного давления

На сверхзвуковых самолетах ПВД выносится с помощью штанги в невозмущенное пространство впереди самолета. Таким же образом устанавливают ПВД и на вертолете.

Рис. 3.17. Конструкция приемника ПВД-6М:

1 – наконечник; 2 – втулка; 3 – заслонка; 4 – обогревательный элемент; 5 – трубопровод полного давления; 6 – прокладка; 7 – прокладка; 8 – упор; 9 – корпус; 10 – трубка; 11 – штуцер С; 12 – штуцер Д; 13 – изоляционная втулка; 14 – провод

Все приемники воздушных давлений должны быть рассчитаны на нормальную работу в условиях возможного обледенения. Камеры полного и статического давлений должны быть герметичными в соответствии с нормами НЛГС [4].

Средствами восприятия давлений в полете занимаются многие зарубежные и отечественные фирмы и предприятия. К основным разработчикам и изготовителям этих средств можно отнести: УКБП, Восход (Россия); Роземаунт (Rosemaunt Inc., США); Смит (Smiths, Англия); Бадин-Краузет (Badin-Crouset, Франция) и Дорниер (Dornier, ФРГ).

Основной причиной погрешностей восприятия статического давления является возмущение воздушной среды, вызванное самолетом, которое зависит от многих факторов: от угла атаки, от угла скольжения, от числа М. Компенсация аэродинамических погрешностей может производиться только у приемников, установленных на фюзеляже или на кромке крыла на скоростях полета не выше числа М = 0,95. На больших скоростях приемники выносятся вперед относительно носовой части самолета. В таблицах 3.1 – 3.4 приведены технические характеристики приемников отечественных и зарубежных изготовителей

Таблица 3.3

Технические характеристики ПВД английского филиала фирмы Rosemount

Тип ПВД

855ВР

856ВР

Воспринимаемые параметры

Рп

Рп , Рст

Соответствие стандартам

Bs 20.135 кл. А

Электропитание обогревательного элемента

115 В, 250 Вт

28 В, 250 Вт

Диапазон рабочих температур

- 60о … + 300 о

- 65о … + 60 о

Диапазон рабочих высот

- 300 – + 15000 м

Таблица 3.4

Технические характеристики ПВД фирмы Crouzet

Тип ПВД

120

36

41 – 22, 31

460, 461

Воспринимаемые параметры

Рст

Рп

Рп

Рп

Электропитание обогревательного элемента

-

27 В пост.,
80 Вт

27 В,
80 Вт

27 В,
120 Вт

Рабочий диапазон α

Нет данных

± 15о

Нет данных

± 15о

Масса

37 ± 3 г

300 ± 5% г

270 ± 5% г

325 ± 5% г

Пневмопроводы

В структурной схеме указателя приборной скорости (рис. 3.5) под звеньями 2 и 3 подразумеваются пневмопроводы (трубопроводы), которые соединяют средства восприятия воздушных параметров (ППД, ПСД, ПВД) с манометрической коробкой (Рп) и полостью корпуса. Пневмопроводы снабжены устройствами, защищающими от скопления влаги (звенья 4 и 5). Пневмопроводы представляют собой металлические или дюритовые трубы. Внутренний диаметр пневмопровода статического канала должен быть не менее 6 мм, а полного канала – не менее 4 мм [4].

В установившемся режиме полета параметры пневмопроводов не сказываются на процесс измерения скорости. Поэтому в формулах (3.11 и 3.12) они не участвуют. При точных исследованиях эти характеристики можно учитывать как потери воздушного потока через значение коэффициента приемников. В динамическом же режиме измерения скорости параметры пневмопроводов должны быть учтены.

Для гражданских транспортных самолетов нормируются коэффициенты запаздывания каналов Рп и Рст . Так, коэффициент запаздывания на уровне Земли каждой статической системы при подключении всех потребителей (если они подключены в единую систему) должен быть не более 0,4 секунды при питании датчиков САУ и не более 1,0 секунды – при питании пилотажно-навигационных приборов.

В связи со сказанным о режимах измерения скорости можно утверждать, что в статическом режиме давления по каналам проходят к указателю без искажений:; ;. Динамический режим работы измерителя скорости полета рассматривается в пятой главе.

Решающее устройство указателя индикаторной скорости

Роль решающего устройства указателя приборной согласно структурной схеме рис. 3.5 состоит в формировании необходимой зависимости угла поворота стрелки от скорости. Для этого необходимо иметь:

- аэродинамическую формулу Рдин = f1(v);

- характеристику упругого чувствительного элемента x = f2(Рдин);

- характеристику механизма α = f3(x);

Решение системы трех уравнений дает уравнение шкалы

. (3.14)

Если предположить, что упругий чувствительный элемент и механизм имеют линейные характеристики, то x = C1Pдин , α = ix, где C1 – чувствительность упругого элемента по давлению, i – передаточное отношение механизма (трибка – сектор). В этом случае имеем зависимость α = iC1Pдин . Подставив сюда значение Pдин из уравнения (3.13), получим окончательно уравнение шкалы

. (3.15)

Уравнение шкалы по формуле (3.15) показывает, что она неравномерная. В начале шкалы деления будут мелкими. Для точной посадки и взлета самолета необходима растянутая шкала в начале ее. Это достигается применением чувствительного элемента с нелинейной характеристикой и механизма с переменным передаточным отношением [13].

С точки зрения характера индикации показательными являются приборы УС-1 и УС-2, применяемые в качестве резервных на истребителях и на магистральных транспортных самолетах.

Из рисунков 3.18 и 3.19 видно, что шкалы приборов УС-1 и УС-2 кусочноравномерные. На начальных участках шкалы растянуты. Если на первом участке шкалы УС-1 цена деления равна 10 км/ч, то на втором участке она равна 50 км/ч. У прибора УС-2 цена деления на обоих участках шкалы одинаковая и равна 10 км/ч, но за счет растянутости первого участка отсчет значений малых скоростей в диапазоне от 80 км/ч до 400 км/ч значительно удобнее и надежнее.

Рис. 3.18. Индикатор прибора УС-1

Рис. 3.19. Индикатор прибора УС-2

Таблица 3.5

v, км/ч

150

200

300

400

600

800

1000

1200

1400

1600

Δv, км/ч

±10

±10

±10

±10

±25

±25

±25

±25

±25

±25

Таблица 3.6

v, км/ч

50

80

100

150-200

250

300

350-450

500

550-600

650

700

750

800

Δv, км/ч

±10

±8

±5

±3,5

±4

±5

±5,5

±6

±6,5

±7,5

±8,5

±9,5

±10

В таблицах 3.5 и 3.6 приведены погрешности приборов УС-1 и УС-2 соответственно при нормальных климатических условиях. Следует отметить, что погрешность УС-2 полностью соответствует требованиям НЛГС-3. Прибор используется в качестве резервного на гражданских транспортных самолетах. Он полностью механический, обладает высокой надежностью, прост в эксплуатации.

На рис. 3.20 показана кинематическая схема указателя приборной скорости со стрелкой, указывающей предельное значение в зависимости от высоты полета, что предусмотрено НЛГС-3. Погрешность индикации предельного значения скорости в диапазоне 300 – 800 км/ч должно быть не более 7 – 10 км/ч. В указателе УС-2 отсутствует канал предельного значения скорости.

Рис. 3.20. Кинематическая схема указателя приборной скорости: 1 – шкала; 2 – стрелка предельной скорости; 3 – стрелка скорости; 4 – сектор; 5 – ось; 6 – поводковый механизм канала ограничения скорости; 7 – анероид; 8 – поводковый механизм канала измерения скорости; 9 – манометрическая коробка; 10 – лекало; 11 – ось; 12 – сектор; 13 – трибка с осью канала измерения скорости; 14 – трибка с осью канала ограничения скорости

Оценка манометрического способа измерения скорости

За критерий оценки манометрического способа измерения скорости примем ожидаемую погрешность. Судя по характеру зависимости скорости от динамического давления согласно формуле (3.11), самым сложным является диапазон малых, околонулевых скоростей.

В основе принципа действия манометрического способа лежит баланс сил:

fдв = fтр , (3.16)

где fдв – движущая сила манометрической коробки; fтр – приведенная сила трения механизма прибора. В свою очередь, движущая сила зависит от приращения динамического давления, приходящегося на единицу скорости и площади манометрической коробки:

, (3.17)

где Fэф – эффективная площадь, равная

,

где r – радиус жесткого центра, R – радиус мембраны манометрической коробки.

Величина приращения ΔР зависит от приращения скорости Δv и от градиента давления по скорости при данном ее значении:

. (3.18)

Поскольку нас интересует диапазон околонулевых скоростей, то градиент dPд/dv определим из формулы (3.11) при ε = 0, ξ = 1:

. (3.19)

Подставляя значение градиента по формуле (3.19) в формулу (3.18), а значение ΔРд после этого в формулу (3.17), получим значение движущей силы манометрической коробки в виде:

. (3.20)

Приняв Δv за погрешность измерения, получим ее значение по (3.16) и (3.20):

, м/с, (3.21)

[fтр] в кг, [Fэф] в метрах квадратных, [ρ] в , [v] в м/с.

Таблица 3.7

v,

0

5

10

15

20

25

30

35

40

45

50

60

100

Рд, мм вод. ст.

0

0,1

0,5

1,1

1,9

3

4,3

5,9

7,7

9,8

12,1

17,4

48,4

,

-

0,02

0,08

0,11

0,13

0,16

0,25

0,35

0,38

0,42

0,46

0,56

0,94

В таблице 3.7 приведены величины давлений и градиента динамического давления по скорости в диапазоне малых скоростей. Из нее видно, что эти величины чрезвычайно малы. Для создания необходимой движущей силы по формуле (3.20) следует увеличивать эффективную площадь, что влечет за собой увеличение габаритов указателя. Стремление получить манометрическую коробку с приемлемыми характеристиками приводит к неразрешимым технологическим проблемам: материал коробки должен быть сверхтонким для получения требуемой величины перемещения центра на малых скоростях. Такая коробка на больших скоростях становится неработоспособной.

В настоящее время производство России выпускает много приборов с различными диапазонами измерения скорости. Но все они начинают измерять скорость не менее, чес с 50 км/ч. Например, указатели Ус-250, УС-350, УС-450, УС-700 начинают измерять с 50 км/ч, УС-800 – со 100 км/ч; УС-2 – с 80 км/ч; УС-1, УС-1600 – со 150 км/ч.

Рис. 3.21. Типовая зависимость погрешности указателя индикаторной скорости от измеряемой величины

На рис. 3.21 приведена типовая зависимость инструментальной погрешности указателя индикаторной скорости в диапазоне измерения согласно формуле (3.21). При нулевой скорости погрешность стремится к бесконечности. При увеличении скорости к бесконечности погрешность стремится к нулю. Практически уже на средних скоростях нет проблем в достижении требуемой точности указателей, датчиков и сигнализаторов скорости.

3.3. Тенденции развития приборов для измерения скоростных параметров

Указателю приборной скорости уделено большое внимание в силу его принципиальной важности как пилотажного прибора, используемого на самых ответственных этапах полета – взлете и посадке. В связи с внедрением экранной индикации утвердилась тенденция, при которой истинная воздушная скорость и число Маха не применяется на борту пассажирского самолета в виде отдельных приборов, как это было на самолетах с аналоговым оборудованием. Их индикация производится на экранах СЭИ. В основе такого решения лежит тот факт, что истинная скорость и число М являются менее ответственными параметрами на этапах взлета и посадки. Истинная скорость вычисляется по уже известным формулам (3.11) и (3.12). При этом учитываются как плотность, так и температура воздуха, которые меняются с изменением высоты полета.

При больших скоростях полета устойчивость, управляемость и экономичность самолета становятся все больше зависимыми от числа М. Для этого на борту самолета имеется индикация о числе М [13, 14]. Число М подсчитывается по формуле на дозвуковой скорости

, (3.22)

и по формуле на сверхзвуковой скорости

. (3.23)

Таблица 3.8

Высота, км

Диапазон измерения,
число М

Допустимые погрешности, число М

0

от 0,6 до 1,3

± 0,04

4

от 0,6 до 2

± 0,07

8

от 0,6 до 2,4

± 0,07

12

от 0,6 до 2,5

± 0,07

16

от 0,8 до 2,5

± 0,09

20

от 1,5 до 2,5

± 0,09

Рис. 3.22. Механический указатель М-2,5

25

от 1,1 до 2,5

± 0,14

Указатель М-2,5 применяется на сверхзвуковых самолетах в качестве резервного прибора.

Рис. 3.23. Механизм указателя М-2,5

Для самолетов различных классов производство России выпускает механические приборы с индикацией как одного воздушного параметра, так и нескольких параметров: только vпр; только М; только vист; vпр+vист ; vпр+ М. Совмещение делается с целью экономии информационного поля приборной доски самолета и удобства считывания информации.

На рисунке 3.24 показан индикатор комбинированного прибора КУС 730/1100, который указывает vпр по внешней шкале и vист по внутренней шкале. Самым интегрированным индикатором из всех скоростных приборов является индикатор электромеханического прибора УСИМ. Он является предвестником электронной индикации. Прибор показывает приборную скорость по внешней шкале и числа М с помощью шкалы на диске, вращающемся в окошке. Кроме измеряемых параметров индицируются: заданное значение скорости (белый треугольник), предельное значение скорости (стрелка-зебра), критическое значение скорости (vmaxmax, треугольник за стрелкой-зеброй), отказ максимально допустимой скорости (бленкер vмд в окошке), отказ заданного значения скорости (бленкер vзад в окошке), отказ канала числа М (бленкер-шторка на фоне шкалы числа М).

Рис. 3.24. Комбинированный

указатель КУС 730/1100

Рис. 3.25. Комбинированный

Указатель УСИМ

Общая идеология авионики такова:

- если позволяет степень надежности, то все параметры индицировать на экранах СЭИ;

- особо ответственные параметры (особенно пилотажные) индицировать с помощью механических приборов. К ним относятся приборная скорость, высота полета, вертикальная скорость, магнитный курс. Следует только отметить, что такая идеология полностью относится к гражданским большим пассажирским самолетам.

Сравнительные характеристики отечественных и зарубежных указателей скорости представлены в таблице 3.9 и на графике рис. 3.26.

.

Рис. 3.26. Графики погрешностей указателей приборной скорости

3.4. Барометрический высотомер

Ответственным параметром полета является высота над поверхностью Земли. Приборы, измеряющие высоту полета, называются высотомерами. По методу измерения высоты они делятся на барометрические, звуковые, радиовысотомеры и другие.

Рис. 3.27. Высота полета самолета:

1 – место взлета; 2 – гора; 3 – уровень моря; Набс – абсолютная высота; Нист – истинная высота; Нотн – относительная высота

Рис. 3.28. Структура эшелона:

ΔHи – погрешность измерителя; ΔHПВД – погрешность ПВД; ΔHстаб – допуск на стабилизацию высоты; ΔHбез – допуск безопасности

Различают следующие высоты полета (см. рис. 3.27).

Абсолютная высота, то есть высота полета относительно уровня моря. Она не зависит от рельефа местности, над которой пролетает самолет. Истинная высота, то есть высота над пролетаемой местностью. Она равна разности между абсолютной высотой и высотой местности над уровнем моря. Относительная высота, то есть высота полета относительно какого-либо условного места, например, аэродрома. Рассмотренные разновидности высот полета условны. Сам же барометрический высотомер всегда измеряет относительную высоту, то есть высоту относительно места, значение параметров которого были приняты при тарировке (уровень моря). В отличие от этого радиовысотомер принципиально измеряет истинную высоту. Для получения значения истинной высоты с помощью барометрического высотомера в его показания необходимо внести ряд поправок. Приближенно истинная высота получается путем вычисления из абсолютной высоты известного превышения местности под самолетом.

Принцип действия барометрического высотомера основан на использовании закона изменения давления воздуха с увеличением высоты над уровнем моря (рис. 3.29).

Рис. 3.29. Зависимость давления и температуры воздуха от высоты (по стандартной атмосфере):

1 – давление;

2 – температура

На рис. 3.30 представлена принципиальная схема механического барометрического высотомера. Он представляет собой манометр абсолютного давления, измеряющий атмосферное давление. Основным его элементом является анероид, реагирующий на изменение атмосферного давления. Анероид – это герметичная мембранная коробка 4, из которой полностью откачен воздух. Поскольку кабина самолета герметична, то для нормальной работы высотомера анероид помещают в герметичный корпус 3, который сообщается с атмосферой в условиях полета с помощью приемника статического давления 1 и трубопровода 2. Действие механизма высотомера аналогично действию указателя приборной скорости (рис. 3.4).

Рис. 3.30. Принципиальная схема механического барометрического высотомера:

1 – приемник статического давления; 2 – трубопровод; 3 – герметичный корпус; 4 – анероид; 5 – тяга; 6 – кривошип;

7 – сектор; 8 – трибка; 9 – стрелка; 10 – шкала

При подъеме на высоту давление на анероид уменьшается и верхний (жесткий) центр анероида 4 перемещается вверх. С центром шарнирно связана тяга 5, поворачивающая через кривошип 6 зубчатый сектор 7. Поворот сектора передается трибке 8 и стрелке 9. По шкале 10 производится отсчет показаний высотомера в единицах высоты (км, м).

Ценность механического барометрического высотомера заключается в его простоте и исключительно высокой надежности. В связи с этим этот прибор применяется как пилотажный резервный на посадке и взлете с учетом рельефа местности, то есть с учетом разности давлений мест взлета и посадки. Значение абсолютной барометрической высоты (индикаторная приборная высота) используется для эшелонирования по высоте с целью предотвратить столкновение самолетов в полете (рис. 3.29). По структуре эшелона видна структура погрешностей: ΔНи – инструментальная погрешность высотомера, ΔНПВД – погрешность от ПВД, ΔНстаб – погрешность стабилизации самолета, ΔНбез – зона безопасности. Видно, что основную часть погрешностей составляют погрешности прибора вместе с ПВД. Считается, что этой точности достаточно для систем управления воздушным движением при условии, что эшелоны расположены на достаточно большой высоте над уровнем Земли. Тут речь не идет о таких летательных аппаратах, как экраноплан, судно на воздушной подушке.

Зависимость давления от высоты дает барометрическая формула [12 – 15]. Для высот от 0 до 11000 м барометрическая формула имеет вид

. (3.24)

Для высот выше 11000 м

, (3.25)

где РН – абсолютное давление на высоте Н в кг/м2; τ – температурный градиент, изменение температуры воздуха, соответствующее изменению высоты на 1 м, равен среднегодовому значению τ = 0,0065 град/м; Н – высота в м;

Ро – атмосферное давление у моря в кг/м2; R – газовая постоянная, R = 29,27 м/град; То – абсолютная температура у моря в оК (273о+tоС); Р11 – давление на высоте 11000 в кг/м2; Т11 – температура на высоте 11000 м.

Решая формулы (3.24) и (3.25) относительно высоты Н, получим так называемые гипсометрические формулы. Для высот от 0 до 11000 м гипсометрическая формула имеет вид

; (3.26)

для высот более 11000 м

. (3.27)

Из этих формул видно, что измеряемая высота зависит от четырех параметров

.

Из этого следует, что барометрический метод позволяет вычислить высоту полета относительно любого уровня местности, если известны значения Ро, То, РН. Однако при конструировании и производстве барометрических высотомеров в качестве расчетного уровня принимается уровень моря. Кроме того, все величины параметров формул (3.24) – (3.27) берутся по стандартной атмосфере [32 – 34]. Барометрический высотомер тарируется для так называемых стандартных нормальных условий, когда Ро = 760 мм рт. ст., То = 288оК (15 оС), τ = 0,0065 град/м. В таком случае высота полета будет зависеть только от давления РН.

.

Структура погрешностей барометрического высотомера

У барометрического высотомера имеются следующие погрешности:

- методическая погрешность;

- инструментальная погрешность.

Методические погрешности барометрического высотомера вызваны несовершенством барометрического метода измерения относительной высоты. Их можно разделить на две группы:

1. Погрешности, вызванные изменением рельефа местности, над которой пролетает самолет.

2. Погрешности, вызванные отклонением атмосферных условий (давления и температуры) от нормальных условий, принятых при тарировке прибора.

Первый вид погрешности может быть скорректирован в полете, если экипаж самолета знает высоту места, над которым пролетает самолет по отношению к уровню моря, или если экипаж знает, чему равно давление у Земли в месте, над которым пролетает самолет.

Погрешности второго вида, в свою очередь, делятся на:

1. Погрешности, связанные с изменением давления у Земли.

2. Погрешности, связанные с изменением закона распределения температуры воздуха по высоте (в отличие от стандартного закона).

Поправка, вызванная изменением давления Ро, не зависит от значения высоты полета и равна

, (3.28)

где Нпр – показания прибора; R – газовая постоянная; Ро = 760 мм рт. ст.;

ΔР – изменение давления в мм рт. ст.; Трасч – расчетное значение средней температуры, равное

. (3.29)

Поправка по формуле (3.28) на изменение давления Ро производится на Земле или в полете путем перевода стрелок с помощью барометрической шкалы, градуированной в мм рт. ст. Сведения об изменившихся параметрах при этом могут передаваться по радио.

Зависимость между относительной высотой и показанием прибора с учетом фактической средней температуры дает следующая формула:

Глава 4

СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ

4.1. Назначение системы

Система воздушных сигналов (СВС) предназначена для выдачи основной пилотажной информации на указатели контрольно-измерительных приборов в кабине самолета и на бортовые системы. До внедрения СВС на летательных аппаратах ставились отдельные датчики параметров, сигнализаторы и указатели. Причем это делалось в интересах отдельных потребителей независимо от других. В связи с этим могли быть на борту аппарата избыточность несогласованной между собой информации, избыточность массы аппаратуры, неоправданные материальные затраты, усложнения технологии обслуживания оборудования в целом.

Система воздушных сигналов объединила все датчики и указатели в единую идеологию, исключив дублирование и несогласованность информации. СВС – автономная система, состоящая из датчиков первичных аэродинамических параметров, вычислителя и указателей. Она выдает первичные параметры, параметры движения и производные от них.

К первичным параметрам СВС относятся: давление статическое, давление полное, температура торможения, угол атаки местный, угол скольжения местный.

К параметрам движения летательного аппарата, решаемых СВС, относятся: скорость приборная, скорость истинная, число Маха, вертикальная скорость, угол атаки истинный, угол скольжения истинный, температура наружного воздуха.

Первые системы и у нас в стране и за рубежом были аналоговые. К ним относится СВС-72, установленная на многих самолетах, в том числе на Ил‑86, Як-42, Ил-76, Ан-124 и др. Эта система соответствует международному стандарту АРИНК-575 для аналоговых СВС. Ориентировочно с 1975 года интенсивно стали внедряться в эксплуатацию аналого-цифровые СВС, к которым относится СВС-2Ц и др. Аналоговая часть СВС по-прежнему относится к датчикам первичных параметров. На цифровую дозвуковую систему СВС распространяется международный стандарт АРИНК-706 из серии стандартов АРИНК 700 для цифрового борта.

На рис. 4.1 представлена структурная схема дозвуковой СВС по стандарту АРИНК-706. Видно, что система состоит из вычислителя и индикаторов приборной доски. Характерно для этой СВС то, что датчики Рп и Рст конструктивно расположены внутри цифрового вычислителя. Потребители строго регламентированы. По стандартам АРИНК серии 700 все бортовые системы четко разделены по основным своим функциям (об этом см. главу 1). В связи с этим СВС для дозвуковых самолетов имеет ограниченный круг решаемых задач. Тут сказываются требования к простоте эксплуатации оборудования. Выделяются только те параметры, которые являются стандартными для любого самолета.

Рис. 4.1. Структурная схема дозвуковой СВС

В соответствии с минимальными требованиями стандарта НЛГС на борту самолета должно быть установлено необходимое количество приемников и датчиков аэродинамических параметров, о чем было сказано в третьей главе. Один из вариантов оборудования борта в интересах нормальной работы СВС приведен на рис. 4.2.

Рассмотренная выше стандартная СВС сформирована под действием тенденции централизации параметров и разделения систем по функциям. Однако не исключена тенденция децентрализации параметров и пересмотр задач бортовых систем.

Объективными причинами для этого могут быть: резкое увеличение вычислительных способностей вычислителей систем, уменьшение их габаритов и массы, появление датчиков первичной информации со встроенными микропроцессорами. Датчики берут на себя некоторые функции вычислителя СВС (коррекция характеристик, фильтрация, формирование кода). Задачи вычислителя СВС упрощаются, вплоть до его аннулирования.

Возникает возможность интеграции разрозненных, но более интеллектуальных датчиков на более высоком уровне систем. Одним из вариантов может быть таков, когда функции СВС будут схемно и конструктивно объединены с бесплатформенной инерциальной системой (БИНС), которая имеет избыток вычислительной мощности и габаритов.

Системы воздушных сигналов для военных самолетов, для вертолетов и других типов летательных аппаратов могут отличаться от рассмотренной выше стандартной СВС.

, (3.30)

где Трасч – определяется по формуле (3.29), а фактическая температура равна

.

Температура ТН определяется термометром наружного воздуха в полете, а То определяется по сведениям с Земли или приближенно может быть получена так

.

По показанию высотомера Нпр и по измеренной температуре окружающего воздуха ТН вычисляют по формуле (3.29) относительную высоту (если на барометрической шкале установлено давление точки вылета) или абсолютную высоту (если установлено давление 760 мм рт. ст.).

Инструментальные погрешности являются следствием несовершенства конструкции прибора. К числу инструментальных погрешностей относятся:

- шкаловые погрешности;

- погрешности, вызванные трением в подвижных соединениях;

- погрешности, вызванные неуравновешенностью деталей конструкции;

- температурные погрешности;

- гистерезис.

Происхождение всех этих погрешностей присущи механическим приборам [12 – 15]. Остановимся на погрешности, вызываемой трением. Особенностью барометрического высотомера является то, что в его конструкции имеется большое количество трущихся соединений.

Погрешность прибора от трения равна [13]

, (3.31)

где ΔРтр – изменение давления, необходимое для преодоления трения в г/см2; dPH/dPH – барометрический вертикальный градиент, равный изменению атмосферного давления в мм рт. ст. на 1 м высоты; fтр – приведенная сила трения механизма в г; Fэф – эффективная площадь анероида в см2.

Барометрический градиент определяется путем дифференцирования уравнений (3.24) и (3.25). Для высот до 11 км

, (3.32)

для высот более 11 км

. (3.33)

Таблица 3.10

Н, км

0

2

4

6

8

10

12

14

16

18

20

dPH/ dH ·102

9

7,4

6

4,8

3,8

3,0

2,3

1,7

1,2

0,85

0,65

Из формулы (3.31) видно, что погрешность высотомера обратно пропорциональна барометрическому градиенту, который с ростом высоты резко уменьшается (таблица 3.10). При прочих равных условиях погрешность от трения за счет уменьшения градиента на высоте 20 км будет больше почти в 14 раз по сравнению с погрешностью у Земли. Такой результат получится, если подсчитывать погрешность по формуле (3.31) в предположении, что значение приведенной силы трения fтр постоянно по всей шкале высотомера. Такое может быть тогда, когда равномерность шкалы достигается за счет нелинейности по давлению характеристики анероида (линейной по высоте) и постоянном передаточном отношении /dw = const.

Ошибка высотомера от трения с анероидом, характеристика которого линейна по давлению, равна

, (3.34)

где k – коэффициент, учитывающий трение в остальных деталях (k ≈ 1,2 … 1,5); с – коэффициент пропорциональности характеристики шкалы (α = сН);

s – коэффициент пропорциональности характеристики анероида по давлению (w = sPН); Мтр – приведенный момент трения.

У такого высотомера погрешность от трения на высоте 20 км почти в 200 раз больше, чем у Земли. Это обстоятельство ограничивает возможности барометрического высотомера точно измерять высоту на больших высотах.

Рис. 3.31. Типовая зависимость погрешности барометрического высотомера от высоты:

Нкр – критическая для измерения высота

На рис. 3.31 показана типовая зависимость погрешности барометрического высотомера от трения в зависимости от измеряемой высоты. Критическое значение высоты, которую еще можно измерить с помощью барометрического высотомера, равно 30 км.

Таблица 3.11

Барометрическая высота, м

-500

0

600

3000

6000

9000

12000

15000

Допустимая погрешность, м

15

10

15

25

30

40

45

100

В таблице 3.13 приведены минимальные требования по точности к барометрическому высотомеру для гражданских самолетов в соответствии с приложением 8 к НЛГС-3 [5]. Из нее видно, что в международных требованиях к высотомеру учтены его потенциальные возможности по точности в зависимости от измеряемой высоты. Эта тенденция четко прослеживается по фактическим характеристикам серийных барометрических высотомеров. Так, отношение погрешностей при нормальных условиях на предельной и начальной высотах у высотомера ВД-10 равно 90/15; у ВМ-15 – 120/15; у ВД-20 – 350/20; у ВД‑28 – 600/20.

Принципиальные теоретические положения, рассмотренные здесь, в полной мере относятся к сигнализаторам и датчикам высоты.

Рис. 3.32. Лицевая часть высотомера ВД-20: 1 – винт; 2 – стрелка малая; 3 и 4 – индексы; 5 – стрелка большая; 6 – шкала барометрическая; 7 – индекс; 8 – ручка кремальеры

Рис. 3.33. Внешний вид высотомера ВД-20

На рис. 3.33 показана лицевая часть, а на рис. 3.34 показан внешний вид высотомера двух стрелочного ВД-20, измеряющего относительную высоту полета в диапазоне от 0 до 20000 метров. Большая стрелка 5 показывает высоту в метрах, один ее оборот соответствует 1000 м. Стрелка малая 2 показывает высоту в километрах, один ее оборот соответствует 20000 м. Масса прибора 0,8 кг. Погрешность прибора резко дифференцирована по высоте. Если на высоте нулевой при нормальных условиях она составляет ± 20 м, то на высоте 20000 м – ± 350 м.

Если высота полета измеряется относительно аэродрома взлета, то кремальерой 8 устанавливают стрелки прибора в нулевое положение. Если же необходимо измерить высоту полета относительно аэродрома посадки, то кремальерой 8 устанавливают барометрическое давление пункта посадки по шкале 6. Одновременно с поворотом барометрической шкалы 6 вращаются индексы 3 и 4, которые указывают по внешней и внутренней шкалам высоту, соответствующую изменению барометрического давления относительно давления на уровне моря (760 мм рт. ст.).

3.5. Манометрический вариометр

Прибор, измеряющий вертикальную скорость самолета, называется вариометром. Действие манометрического вариометра основано на свойстве атмосферного давления изменяться с изменением высоты, а также на линейной зависимости скорости потока воздуха в капилляре при перепаде давлений на его концах.

Рис. 3.34. Принципиальная схема манометрического вариометра:

1 – манометрическая коробка; 2 – капилляр; 3 – стрелка; 4 – штуцер; 5 – герметичный корпус

На рис. 3.34 представлена принципиальная схема манометрического вариометра. Полость корпуса 5 прибора через капилляр 2 и штуцер 4 сообщается с окружающей самолет атмосферой. Штуцер 4 соединен с приемником статического давления.

Внешние поверхности манометрической коробки 1 воспринимают давление Р1, действующее в полости 5, обусловленное протекаемостью капилляра 2. Внутренние его поверхности находятся под действием атмосферного давления Рст, поступающего через штуцер 4. В результате этого, коробка 1 воспринимает разность давлений

.

Эта разность тем больше, чем больше скорость изменения высоты, то есть

,

где vy – вертикальная скорость самолета.

Рассмотрим работу вариометра в режимах подъема, снижения самолета.

Подъем самолета над Землей

При подъеме самолета на высоту атмосферное давление уменьшается (см. рис. 3.29). Давление внутри коробки 1 тоже уменьшается. Давление же в полости корпуса 5 превышает атмосферное давление, так как выход воздуха из полости корпуса тормозится капилляром 2 ввиду его малого внутреннего диаметра, то есть изменение давления в полости корпуса отстает от измерения атмосферного давления.

В силу того, что Р1 > Рст, коробка сжимается и через передаточно-множительный механизм поворачивает конец стрелки 3 вверх от нулевой отметки шкалы циферблата. Если подъем самолета прекращается, давление в полости корпуса 5 выравнивается с давлением внутри манометрической коробки 1 и стрелка 3 возвращается на нулевую отметку шкалы циферблата.

Снижение самолета над Землей

При снижении самолета атмосферное давление увеличивается. Давление внутри манометрической коробки тоже увеличивается. Давление в полости корпуса 5 становится меньше атмосферного давления, так как вход воздуха в полость тормозится капилляром 2. Под действием разности давлений (Рст>Р1) манометрическая коробка 1 расширяется и через передаточно-множительный механизм поворачивает стрелку 3, конец которой будет перемещаться вниз от нулевой отметки шкалы циферблата (к надписи "спуск"). После прекращения снижения самолета давление в полости корпуса 5 через капилляр 2 выравнивается с давлением внутри коробки 1 и стрелка 3 возвращается в нулевую отметку шкалы циферблата.

Конструктивные и метрологические параметры манометрического вариометра определяются его градуировочной формулой [13]

, (3.35)

где W – внутренний объем корпуса в м3; l – длина капилляра в м; η – коэффициент вязкости воздуха в кг·сек/м2; Тк – средняя температура воздуха внутри капилляра в оК; d – внутренний диаметр капилляра в м; R – газовая постоянная, равная 29,27 м/град; Т1 – температура воздуха в корпусе прибора; Т – температура воздуха вне самолета в оК. Поскольку прибор градуируют при комнатной температуре То, которой соответствует коэффициент вязкости ηо , то Тк = Т1 = Т = То . Поэтому формула (3.35) имеет вид

. (3.36)

Погрешности манометрического вариометра

Погрешности манометрического вариометра следующие:

- инструментальные;

- методические.

Причины возникновения инструментальных погрешностей манометрических вариометров такие же, как и у других манометрических приборов, в том числе как у указателя индикаторной скорости.

Перечислим методические погрешности манометрического вариометра:

- динамическая погрешность;

- температурная погрешность от непостоянства температуры Т1 внутри корпуса;

- температурная погрешность из-за неодинаковости температур Тк , Т1 и Т в формуле (3.35).

Динамическая погрешность обуславливается запаздыванием изменения давления внутри корпуса прибора. Передаточная функция механизма вариометра в этом случае имеет вид

, (3.37)

где q = Рст - Р1 ; – чувствительность прибора; τ – постоянная времени анероидного звена (3.37), равная (в секундах)

,

где Рк – среднее давление в капилляре.

При постоянном вертикальном ускорении, например, , динамическая погрешность согласно формуле (3.37) достигает величины . При τ = 1 с и а = 1 м/с2 погрешность м/с.

Вторая составляющая методической погрешности вариометра возникает из-за нагрева или охлаждения воздуха внутри прибора, когда изменяется температура материала корпуса. С целью уменьшения этой погрешности корпус прибора изготавливают из термоизоляционного материала (пластмассы).

Третья составляющая методической погрешности вариометра появляется, когда температура Тк , Т1 и Т отличается от температуры тарировки Тк = Т1 = Т = То . Эта погрешность может достигать 30 % на предельных значениях измеряемой вертикальной скорости. Однако на малых значениях скорости погрешность меньше, а при околонулевых значениях отсутствует. Поэтому функция прибора – точность контроля горизонтального полета – не зависит от этого вида методической температурной погрешности.

Данная погрешность может быть приближенно подсчитана по формуле:

. (3.38)

Таблица 3.12

vy, м/с

0

1

3

5

7

9

10

± Δvy, м/с

toC = 25 ± 10

0,5

1,0

1,0

1,0

1,0

1,0

1,0

± Δvy, м/с

toC = -20 – +55

1,0

1,0

1,5

1,5

1,5

1,5

1,5

Таблица 3.13

vy, м/с

0

1

4

8

12

16

20

24

30

± Δvy, м/с

toC = 25 ± 10

0,5

0,75

2,0

2,0

2,5

2,5

3,0

3,0

3,0

± Δvy, м/с

toC = -20 – +55

1,0

1,5

2,5

2,5

3,0

3,0

3,5

3,5

3,5

Таблица 3.14

vy, м/с

0

1

5

10

15

30

45

60

75

± Δvy, м/с

toC = 25 ± 10

0,5

1,0

2,0

2,0

2,5

3,0

4,0

4,0

5,0

± Δvy, м/с

toC = -20 – +55

1,0

1,5

2,5

2,5

3,5

4,0

6,0

8,0

10

В таблицах 3.12 – 3.14 приведены суммарные статические допустимые погрешности для вариометров с различными диапазонами измерения вертикальной скорости согласно международным требованиям [5]. Этими же нормами оговариваются динамические свойства вариометров. Постоянная времени для высот полета ≤ 3,5 км должна заключаться в пределах:

- для прибора с диапазоном индикации ±10 м/с – 4 ± 2 с;

- для прибора с диапазоном индикации ±30 м/с – 3 ± 1 с;

- для прибора с диапазоном индикации ±75 м/с – 2 ± 1 с.

Для гражданских транспортных самолетов выпускаются вариометры с диапазонами индикации до ± 75 м/с. К ним относятся серийные приборы ВР-10М, ВАР-30М, ВАР-75М.

Для маневренных самолетов выпускаются серийно вариометры с диапазоном индикации до ± 500 м/с. К ним относятся приборы ВАР-150М, ВАР‑300, ВАР-500 и другие.

Рис. 3.35. Вариометры: а – ВР-10М; б – ВАР-30М;

в – ВАР-75М; г – ВАР-300; д – ВАР-500; е – ВРФ-2; ж – ВРФ-6

Подробнее о принципах отображения и типах индикаторов пилотажных параметров изложено в главе 8.

Глава 4

СИСТЕМА ВОЗДУШНЫХ СИГНАЛОВ

4.1. Назначение системы

Система воздушных сигналов (СВС) предназначена для выдачи основной пилотажной информации на указатели контрольно-измерительных приборов в кабине самолета и на бортовые системы. До внедрения СВС на летательных аппаратах ставились отдельные датчики параметров, сигнализаторы и указатели. Причем это делалось в интересах отдельных потребителей независимо от других. В связи с этим могли быть на борту аппарата избыточность несогласованной между собой информации, избыточность массы аппаратуры, неоправданные материальные затраты, усложнения технологии обслуживания оборудования в целом.

Система воздушных сигналов объединила все датчики и указатели в единую идеологию, исключив дублирование и несогласованность информации. СВС – автономная система, состоящая из датчиков первичных аэродинамических параметров, вычислителя и указателей. Она выдает первичные параметры, параметры движения и производные от них.

К первичным параметрам СВС относятся: давление статическое, давление полное, температура торможения, угол атаки местный, угол скольжения местный.

К параметрам движения летательного аппарата, решаемых СВС, относятся: скорость приборная, скорость истинная, число Маха, вертикальная скорость, угол атаки истинный, угол скольжения истинный, температура наружного воздуха.

Первые системы и у нас в стране и за рубежом были аналоговые. К ним относится СВС-72, установленная на многих самолетах, в том числе на Ил‑86, Як-42, Ил-76, Ан-124 и др. Эта система соответствует международному стандарту АРИНК-575 для аналоговых СВС. Ориентировочно с 1975 года интенсивно стали внедряться в эксплуатацию аналого-цифровые СВС, к которым относится СВС-2Ц и др. Аналоговая часть СВС по-прежнему относится к датчикам первичных параметров. На цифровую дозвуковую систему СВС распространяется международный стандарт АРИНК-706 из серии стандартов АРИНК 700 для цифрового борта.

На рис. 4.1 представлена структурная схема дозвуковой СВС по стандарту АРИНК-706. Видно, что система состоит из вычислителя и индикаторов приборной доски. Характерно для этой СВС то, что датчики Рп и Рст конструктивно расположены внутри цифрового вычислителя. Потребители строго регламентированы. По стандартам АРИНК серии 700 все бортовые системы четко разделены по основным своим функциям (об этом см. главу 1). В связи с этим СВС для дозвуковых самолетов имеет ограниченный круг решаемых задач. Тут сказываются требования к простоте эксплуатации оборудования. Выделяются только те параметры, которые являются стандартными для любого самолета.

Рис. 4.1. Структурная схема дозвуковой СВС

В соответствии с минимальными требованиями стандарта НЛГС на борту самолета должно быть установлено необходимое количество приемников и датчиков аэродинамических параметров, о чем было сказано в третьей главе. Один из вариантов оборудования борта в интересах нормальной работы СВС приведен на рис. 4.2.

Рассмотренная выше стандартная СВС сформирована под действием тенденции централизации параметров и разделения систем по функциям. Однако не исключена тенденция децентрализации параметров и пересмотр задач бортовых систем.

Объективными причинами для этого могут быть: резкое увеличение вычислительных способностей вычислителей систем, уменьшение их габаритов и массы, появление датчиков первичной информации со встроенными микропроцессорами. Датчики берут на себя некоторые функции вычислителя СВС (коррекция характеристик, фильтрация, формирование кода). Задачи вычислителя СВС упрощаются, вплоть до его аннулирования.

Возникает возможность интеграции разрозненных, но более интеллектуальных датчиков на более высоком уровне систем. Одним из вариантов может быть таков, когда функции СВС будут схемно и конструктивно объединены с бесплатформенной инерциальной системой (БИНС), которая имеет избыток вычислительной мощности и габаритов.

Системы воздушных сигналов для военных самолетов, для вертолетов и других типов летательных аппаратов могут отличаться от рассмотренной выше стандартной СВС.

Рис. 4.3. Структурная схема СВС для военного самолета

На рис. 4.3 представлена структурная схема СВС для военного сверхзвукового самолета. В первой главе было сказано, что нормы требований стандартов АРИНК и НЛГС для военных самолетов необязательны. Тем не менее, сходство приведенных двух систем большое. Общая идеология сохранена, хотя диапазоны измерения первичных параметров отличаются, разное число потребителей. СВС для вертолета будет отличаться наличием дополнительных специальных измерителей первичных параметров, которые рассматриваются в пятой главе.

4.2. Датчик температуры торможения

Датчик температуры торможения воздушного потока применяется на летательных аппаратах для определения температуры наружного воздуха, в том числе для использования его информации в СВС. Приборы, измеряющие температуру, в общем случае называются термометрами. На борту летательного аппарата они применяются для измерения температуры масла, охлаждающей жидкости цилиндров, карбюратора, выходящих газов реактивного двигателя, температуры торможения воздушного потока.

Коротко рассмотрим методы измерения температуры: объемный, манометрический, термоэлектрический, терморезистивный [13-14].

Объемный метод измерения температуры основан на тепловом расширении различных тел (измерение объема). По этому методу строятся дилатометрические, биметаллические и жидкостные термометры.

Манометрический метод измерения температуры основан на тепловом изменении давления газа (или пара) внутри замкнутого объема. По этому методу действуют газовые и парожидкостные термометры.

Термоэлектрический метод измерения температуры основан на возникновении контактного потенциала между двумя контактирующими между собой разнородными проводниками (полупроводниками) при разности температур свободных и рабочего концов этих проводников.

Терморезистивный – метод измерения температуры основан на изменении электрического сопротивления металлов или полупроводников при изменении температуры.

Для измерения температуры торможения воздушного потока наиболее широкое применение нашел терморезистивный метод (метод термосопротивлений).

Рис. 4.4. Принципиальная схема терморезистивного датчика температуры торможения: 1 – камера торможения потока; 2 – терморезистор; 3 – электропровода

Чувствительным элементом в этом датчике является проволочный или полупроводниковый терморезистор, величина которого зависит от температуры. В общем эта зависимость нелинейная. Для изготовления проволочных терморезисторов применяют чистые металлы, так как они имеют большее значение температурного коэффициента, чем сплавы металлов. Таким металлом является платина. Удельное сопротивление этого металла равно 0,0981 Ом·мм2/м, средний температурный коэффициент электрического сопротивления для интервала 0 – 100 оС равен 3,91·10-3 1/град, температурный интервал измерения от – 250 до 1250 оС.

В диапазоне температур от – 200 до 0 оС платиновый терморезистор имеет следующую зависимость сопротивления R от температуры Q:

, (4.1)

а в диапазоне от 0 до 600 оС

, (4.2)

где А = 3,9692·10-3 1/град; В = -5,8290·10-7 1/град2; С = -4,3303·10-12 1/град4; Ro – сопротивление при Q = 0 оС.

Полупроводниковые терморезисторы имеют обратную зависимость R от Q: с увеличением температуры сопротивление уменьшается по экспоненциальному закону:

, (4.3)

где Т – абсолютная температура; А и В – коэффициенты, зависящие от материала и размеров терморезистора. Их существенным недостатком является малый диапазон измерения температуры, который лежит в пределах от 120 до 180 оС, и существенно нелинейная статическая характеристика.

Характерным представителем датчиков температуры торможения воздушного потока является серийный датчик П-104 (рис. 4.5).

Рис. 4.5. Внешний вид

датчика температуры торможения П-104

Рис. 4.6. Принципиальная схема датчика температуры торможения П-104: 1 – проволочный термочувствительный элемент; 2 – камера торможения (приемник температуры); 3 – стойка; 4 – фланец; 5 – электрический соединитель

Датчик П-104 предназначен для измерения температуры торможения потока воздуха и выдачи электрических сигналов, пропорциональных температуре заторможенного потока воздуха, в системы воздушных сигналов и системы регулирования двигателей.

Термочувствительный элемент представляет собой цилиндрическую катушку, на которой бифилярно намотаны две независимые друг от друга спирали из платиновой проволоки диаметром 0,04 мм. Кинетическая энергия движущегося потока в датчике превращается в тепловую энергию с коэффициентом полезного действия, равным 98 %. Рабочая температура датчика в диапазоне от –60 до 300 оС, номинальное сопротивление Ro = 100 Ом, масса датчика 0,25 кг.

Как видно из формул (4.1) и (4.2) характеристика термочувствительного элемента нелинейна во всех диапазонах измеряемых температур. Для ответственных датчиков пользуются гостированными характеристиками. Конкретно характеристика П-104 соответствует требованиям ГОСТ 6651-78 [35]. Погрешность датчика П-104 при конкретной температуре подсчитывается по формуле

. (4.4)

В американском стандарте АРИНК-706 приводится следующая зависимость электрического сопротивления от температуры

,

где Q – температура в оС; Rо – сопротивление при температуре 0 оС; равное 500 Ом; А = 0,003832; В = 1,81; С = 0,1 для Q ниже 0 оС; С = 0,0 – для Q выше 0 оС. Материал чувствительного элемента платина.

Процесс измерения температуры торможения, таким образом, сводится к измерению электрического сопротивления. При этом основной схемой измерения является мост Уитстона.

Температура наружного воздуха рассчитывается по формуле [13]

, (4.5)

где ТН – истинная температура наружного, невозмущенного потока; ΔТдин – динамическая добавка к температуре, равная

, (4.6)

где vист – истинная воздушная скорость в м/с.

ГОСТ 25431-82 устанавливает следующую зависимость через число Маха

, (4.7)

где не учитывается коэффициент качества датчика температуры торможения.

С учетом же этого коэффициента качества формула (4.7) примет вид

, (4.8)

где ТН и ТТ в оС, N – коэффициент качества датчика ТТ , равный отношению температуры терморезистора (чувствительного элемента) датчика к истинной температуре торможения:

. (4.9)

Формула (4.8) используется в СВС-72, СВС-85, которые берут сигналы от датчиков температуры П-69-2М, П-69-4, у которых N = 0,996.

В стандарте АРИНК-706 для дозвуковой СВС рекомендуется следующая формула для определения температуры наружного воздуха

, (4.10)

где

, (4.11)

а Δtn – поправка на ошибку температуры торможения, обусловленную сопротивлением электропроводов на участке между датчиком и вычислителем [30]

, (4.12)

где 2r – сопротивление проводов; a' – их температурный коэффициент; a – коэффициент терморезистора датчика; R – сопротивление терморезистора; Δt' – изменение температуры проводов. В формуле (4.11) под МС подразумевается число Маха, скомпенсированное по аэродинамической ошибке восприятия давления Рст.

4.3. Датчики давления

Датчики давления СВС предназначены для восприятия полного давления Рп, статического давления Рст и преобразования их в электрические сигналы, поступающие в вычислитель в удобной форме с целью вычисления параметров движения летательного аппарата.

Как уже было сказано, датчики давления относятся к датчикам первичной информации для СВС. Параметры движения являются однозначными функциями статического и полного давлений. Датчики давлений во многом определяют метрологические и технологические характеристики СВС, такие как точность, диапазоны измерения, надежность, долговечность, габаритные размеры, качество выходной информации системы и удобство обслуживания в эксплуатации. В связи с этим специалисты авиационной науки и техники датчикам давления уделяют особое внимание. Это требует больших материальных затрат, так как эти датчики обладают сверхвысокими метрологическими характеристиками и стоят на авиационном рынке дорого, порядка 50 тысяч долларов за один датчик.

Разработкой авиационных датчиков давлений занимаются фирмы: УКБП, Восход (Россия); Роземаунт (Rosemount Engineering), Сперри (Sperry Rand. Corp.), Хонеувелл (Honeywell Corp.) – США; Солатрон (Solatron Transducer Ltd.), Маркони (Marconi Avionics) – Англия; Кроузет (Crouzet), Бадин-Кроузет (Badin-Crouzet), Жежер (Jaeger) – Франция и многие другие. Эти фирмы разрабатывают и поставляют высокоточные датчики и СВС для установки их на гражданских, военных самолетах, вертолетах и других летательных аппаратах.

Работы по совершенствованию датчиков давлений ведутся в следующих направлениях.

1. Повышение точности измерения в условиях работы при всех дестабилизирующих факторах (вибрация, удары, ускорения, температура …). Лучшие образцы датчиков имеют погрешность, не превышающую 0,01 – 0,02 % от диапазона измерения. Такая высокая точность к датчикам предъявляется в связи с необходимостью вычислений параметров движения на уровне международных требований.

2. Повышение стабильности информации по времени, что означает способность сохранять первоначальные тарировки датчиков в течение длительного времени.

3. Расширение диапазонов измерения. Особую трудность составляют измерения околонулевых значений наряду с измерениями больших давлений.

4. Повышение надежности датчиков. Некоторые зарубежные фирмы рекламируют среднюю наработку на отказ порядка 40 000 часов (фирма Кроузет, датчик типа 5-1).

5. Уменьшение потребляемой мощности. В данном вопросе используются преимущества полупроводниковой технологии, на базе которой разрабатываются полупроводниковые датчики. У лучших образцов потребляемая мощность составляет 2 – 5 Вт.

6. Совершенствование чувствительных к давлению элементов датчиков. Резкое улучшение чувствительных элементов стало возможным благодаря освоению полупроводниковых материалов, заменивших металлы –бронзу, сталь. Таким полупроводником является кремний. Применение кремния позволяет разработать чувствительные элементы с малыми габаритами, с высокой чувствительностью, надежностью и стабильностью, повышенной виброустойчивостью из-за малой подвижной массы, высоким сроком службы. Особенно принципиальное значение применения полупроводниковых материалов для изготовления чувствительных элементов имеет их сочетание с бурным развитием микроэлектроники и микропроцессорной техники. Это позволило изготавливать эти элементы на основе технологии интегральных схем, когда весь датчик состоит из чипа. Давление воспринимается кристаллом с толщиной порядка 0,25 мм и площадью от 0,8 до 0,1 м2 (в зависимости от диапазона измерения). Примером таких датчиков является датчик ST3000 фирмы Хонеувелл с погрешностью ± 0,1 % от диапазона.

7. Применение в датчиках давлений микропроцессоров, микроэлектроники в целом с целью перехода от аналоговых датчиков к цифровым. Благодаря встраиванию в датчик электронного блока информация по давлению не только преобразуется в электрический сигнал, но и обрабатывается до удобной для СВС формы цифрового сигнала.

Для более удобного исследования отдельных датчиков их целесообразно представить в виде трехблочной схемы (рис. 4.7).

Рис. 4.7. Структурная схема датчика давления: Р – измеряемое давление; 1 –первичный преобразователь; 2 – вторичный преобразователь; 3 – блок обработки сигналов; Х – перемещение; ‑ электрический сигнал

В мировой практике авиаприборостроения наиболее широкое применение находят следующие группы датчиков давления: потенциометрические, индуктивные, емкостные, вибрационно-частотные, компенсационные, тензометрические.

Следует обратить внимание на то, что наименование датчика определяется типом второго звена в структурной схеме (рис. 4.7), или способом восприятия полезной информации первичного преобразователя.

Рис. 4.8. Плоская упругая мембрана: R – радиус, h – толщина

Рис. 4.9. Мембранная коробка: 1 – упругая часть коробки; 2 – верхний подвижный центр; 3 – нижний неподвижный центр

Общим для всех групп датчиков давления является наличие первичного преобразователя (чувствительного элемента по давлению), который преобразует измеряемое давление в перемещение. Исключение составляет компенсационный датчик, первичный преобразователь измеряемое давление преобразует в силу. Чаще всего в качестве первичного преобразователя применяются плоская упругая мембрана (рис. 4.8), мембранная коробка (рис. 4.9) и сильфон (набор специальных мембранных коробок).

Рис. 4.10. Характеристика упругого преобразователя давления: 1 – нелинейная; 2 – линейная; Q – угол наклона

Рис. 4.11. Петля гистерезиса

В любом датчике давления самым ответственным элементом конструкции является его чувствительный элемент. Основными статическими характеристиками любого упругого чувствительного элемента являются:

- зависимость перемещения x от давления

, (4.13)

- зависимость тягового усилия F от давления

. (4.14)

На рис. 4.10 приведены тяговые характеристики позиционного ЧЭ по уравнению (4.13). Зависимость тягового усилия по давлению в соответствии с уравнением (4.14) можно считать пропорциональной:

,

где Sэф – эффективная площадь сильфона.

Сущность уравнения (4.13) не меняется и для вибрационно-частотного датчика давления, выходом чувствительного элемента которого является тоже перемещение, но в виде колебаний. Любой упругий чувствительный элемент должен работать только в пределах закона Гука, когда сила упругости прямо пропорциональна изменению перемещения материала.

Основными погрешностями упругих ЧЭ является упругое последействие, гистерезис и температурная погрешность [13].

Упругое последействие проявляется как погрешность в виде запаздывания информации от скорости нарастания давления. Гистерезис проявляется в неоднозначности выходной информации при увеличении и уменьшении давления (рис. 4.11). Обе эти погрешности вызываются внутренними трениями материала ЧЭ.

Температурная погрешность ЧЭ вызывается изменением модуля упругости его материала при изменении температуры. Чем больше температурный коэффициент материала, тем больше температурная погрешность ЧЭ.

Для изготовления металлических ЧЭ чаще всего применяются бронза (например, берилиевая БрБ2-2,5) и сталь нержавеющая (1Х18Н9Т). Конкретно для СВС применяются упругие чувствительные элементы манометрического и анероидного типов, в принципе действия которых лежит упругая деформация материала под действием разности давлений (когда на выходе перемещение) или возникновение сосредоточенной силы под действием разности давлений (в сильфонах).

Потенциометрический датчик

Конструкция, материал, габаритные размеры ЧЭ сильно зависят от вторичного преобразователя (рис. 4.7). В потенциометрическом датчике давления часто применяется мембранная коробка в качестве ЧЭ с достаточно большими габаритами (40 – 60 мм). Принцип действия этого датчика построен на изменении электрического сопротивления в зависимости от длины металлического проводника при перемещении щетки по поверхности проводника.

Рис. 4.12. Потенциометрический

преобразователь

Рис. 4.13. Элементы потенциометра: 1 – щетка; 2 – провод; 3 – изоляция; 4 – каркас

На рис. 4.12 представлена принципиальная схема потенциометрического преобразователя перемещения x в электрическую величину U. Для изготовления потенциометра используется тонкая проволока, намотанная в один ряд на изоляционный каркас (рис. 4.13). Материалом проволоки может быть константан, платина, сплавы платины и серебра. Щетка изготавливается из платины, золота, серебра. Потенциометры могут быть линейными, нелинейными и функциональными.

Основными погрешностями потенциометрических датчиков являются витковая погрешность и погрешность от трения.

Рис. 4.14. Типовая характеристика потенциометра:

ΔRx – цена одного витка;
Δx – порог по перемещению

На рис. 4.14 приведена характеристика проволочного потенциометра, которая имеет вид лесенки. Пока щетка не передвинется на один виток Δx, изменения сопротивления не происходит. Так образуется витковая погрешность потенциометра, которая численно равна:

, (4.15)

где w – число витков потенциометра.

Погрешность от трения потенциометрического датчика давления вызывается трением щетки о провод, которое через механизм датчика приводится к неподвижному центру упругого чувствительного элемента, отнимая часть полезного перемещения.

С целью повышения точности датчика необходимо увеличивать число витков путем уменьшения диаметра проволоки и длины полезной части намотки. В свою очередь это требует увеличения полезного перемещения ЧЭ, что влечет за собой увеличение габаритов его. Бесконечно тонким провод быть не может (обычно 0,03 – 0,04 мм).

Уменьшение погрешности от трения можно достичь опять же за счет увеличения габаритов ЧЭ. Все это приводит к трудно разрешимому противоречию с миниатюризацией габаритно массовых параметров датчика. Для устранения витковой погрешности иногда применяют безвитковые потенциометры, когда вместо проволоки на каркас наносится токопроводящая масса. До допустимой величины витковую погрешность можно свести путем применения многооборотного потенциометра, например, двадцати оборотного, как это сделано в СВС-72.

В силу простоты потенциометрических датчиков, их относительно низкой стоимости они нашли широкое применение в авиации. Например, датчик ДАС в нескольких модификациях по диапазону до сих пор применяется в аварийных самописцах самолетов. Их вес 1,5 кг и погрешность порядка 2 % от диапазона.

Привлекательность свойств потенциометрических датчиков, недостаточная освоенность других типов, например, полупроводниковых датчиков, побуждали многие фирмы мира к их совершенствованию. Большую и дорогостоящую работу по совершенствованию потенциометрических датчиков провела американская фирма Serkonic Instruments, Inc. На разработку датчика L-113 она затратила около 50000 долларов. Один датчик стоил 400 долларов, вес его 50 грамм, погрешность 1 % от диапазона, проволока потенциометра из платинового сплава, механизм датчика безлюфтовый ленточный. В других моделях датчика эта фирма достигла разрешающую способность 0,3 % при точности 1 % от диапазона измерения. Были применены различными фирмами многие технические решения: ленточная безлюфтовая передача, сверхтонкий провод, безвитковый пленочный или угольный потенциометр, лучшие материалы для провода и щетки, чувствительные элементы из лучших материалов и в виде плоских мембран, и в виде коробок, и в виде трубок Бурдона.

Однако достичь лучших результатов по точности, чем 0,5 – 1 %, не удалось. Кроме низкой точности потенциометрические датчики обладают невысокой надежностью из-за наличия скользящего контакта в паре намотка-щетка.

Индуктивный датчик давления

Индуктивный датчик принципиально отличается от потенциометрического вторичным преобразователем, в качестве которого в нем применяется индуктивный преобразователь перемещения в напряжение переменного тока. Индуктивные датчики давления успешно конкурируют на международном рынке из-за своей простоты, высокого выходного сигнала и надежности, особенно для измерения переменного давления в диапазоне до 1000 Гц.

Принцип действия индуктивного преобразователя основан на изменении коэффициента самоиндукции дросселя вследствие изменения воздушного зазора магнитопровода при перемещении якоря или сердечника относительно обмотки. Коэффициент самоиндукции дросселя определяется выражением

, (4.16)

где ω – число витков обмотки; Ro – магнитное сопротивление воздушного зазора; Rж – магнитное сопротивление магнитопровода.

Из формулы (4.16) видно, что коэффициент самоиндукции зависит от трех параметров – ω, Ro и Rж. При изменении любого параметра из этих трех меняется общее сопротивление катушки с сердечником.

В зависимости от способов изменения индуктивности и полного сопротивления катушек индуктивные преобразователи разделяются на преобразователи с переменным сопротивлением воздушного зазора, с переменным сопротивлением магнитопровода и с переменным числом витков.

Рис. 4.15. Индуктивный преобразователь перемещения: δ – зазор; 1 – сердечник; 2 – якорь

Рис. 4.16. Зависимость коэффициента самоиндукции от зазора

На рис. 4.15 представлена принципиальная схема индуктивного преобразователя с переменным воздушным зазором, а на рис. 4.16 показана его характеристика.

В мировой практике авиаприборостроения наибольшее применение нашли индуктивные преобразователи с переменным воздушным зазором различных конструкций, в том числе дифференциальные. Как и многие другие индуктивные преобразователи обрабатываются с помощью уравновешенного моста (рис. 4.18).

К положительным свойствам индуктивных датчиков относятся высокая надежность и практически неограниченная долговечность из-за отсутствия контактного трения; высокая чувствительность, что позволяет измерять перемещения до 0,001 мм. К недостатку индуктивного преобразователя следует отнести механическое воздействие его на первичный преобразователь (ЧЭ), с которым связан якорь, который может притягиваться к сердечнику.

Рис. 4.17. Индуктивный преобразователь дифференциальный

Рис. 4.18. Мостовая схема подключения индуктивных преобразователей

Лучшие образцы индуктивных датчиков давления зарубежных и отечественных фирм имеют следующие характеристики: основная погрешность ± 0,5 % от диапазона, гистерезис ± 0,1 %, рабочий диапазон частоты измерения давления 0 – 1000 Гц, масса 100 – 150 грамм, выходной сигнал 0 – 5 вольт.

Емкостный датчик давления

Емкостный датчик давления отличается вторичным преобразователем, который представляет собой воздушный конденсатор, одна из пластин которого неподвижна, а вторая перемещается под действием первичного упругого преобразователя.

Принцип действия емкостного преобразователя перемещения в напряжение основан на изменении емкости конденсатора при изменении взаимного положения электродов.

. (4.17)

Емкость плоского конденсатора равна (в фарадах)

, (4.18)

где ε – диэлектрическая проницаемость среды (воздуха) между пластинами конденсатора в фарад/см; δ – расстояние между пластинами в см; ε = εо· ε', где εо·= 8,86·10-4 фарада/см – абсолютная диэлектрическая проницаемость вакуума; ε' – относительная диэлектрическая проницаемость среды.

Из формулы (4.18) видно, что изменения величины емкости можно достичь путем изменения одной из величин ε, S и δ. В малогабаритных, высокоточных авиационных датчиках давления чаще всего изменяется расстояние между пластинами.

Рис. 4.19. Емкостный преобразователь:

1 – кварцевые диафрагмы;

2 – пластины конденсаторов;

3 – металлическое покрытие

К особенностям емкостного преобразователя относятся: простота конструкции, высокие динамические характеристики. В связи с этим емкостные датчики часто применяют для измерения высокочастотных процессов изменения давлений. Емкостный преобразователь необходимо защищать от паразитных емкостей и всевозможных посторонних электрических наводок, так как к ним сильно восприимчив. Такой преобразователь показан на рис. 4.19. В нем обе диафрагмы изготовлены из кварца, пластины конденсаторов напылены на внутренних сторонах диаграмм. Для исключения образования паразитных емкостей на внешние поверхности диафрагм 1 нанесены тонкопленочные металлические покрытия 3. Для еще более надежной защиты преобразователя от всевозможных помех, в том числе от загрязнения пластин и пространства между ними, кварцевые диафрагмы герметично соединяют между собой, образуя анероидную коробку. Кварцевые мембраны гарантируют стабильность размеров, минимальный гистерезис и полное отсутствие структурной усталости. Одна диафрагма является рабочей, непосредственно воспринимающей измеряемое давление, другая диафрагма выполняет роль опорной. Под действием давления рабочая диафрагма прогибается внутрь, вызывая увеличение емкости.

Для получения выходного электрического сигнала емкость подключают в схему моста или генератора датчика. При изменении давления на входе датчика изменяется емкость и на выходе образуется напряжение в виде непрерывной величины, либо в виде частоты от генератора. Частотный сигнал, пропорциональный давлению, преобразуется в цифровой сигнал, который с выходного регистра, например, выдается потребителю в двоичном параллельном или последовательном коде (иногда то и другое).

На рис. 4.20 приведена одна из возможных функциональных схем емкостного датчика давления. Примерно по такой схеме фирмой Коретт (Corrett Corp) США разработан базовый емкостный датчик давления, который в модификациях измеряет абсолютное давление (Рст) в диапазоне от 0 до 3400 мбар (2550 мм рт. ст.) и дифференциальное давление в диапазоне от 0 до 405 мбар (303,75 мм рт. ст.). Этот датчик имеет характеристики: основная погрешность ± 0,01 % от диапазона, суммарная погрешность ± 0,025 %, гистерезис по давлению не более 0,025 мм рт. ст., разрешающая способность ± 0,00019 % от диапазона, диапазон температур от – 54 до 110 оС, диапазон рабочих частот от 0 до 1500 Гц, напряжение питания 115/230 Гц, масса 0,56 кг, габаритные размеры . Этот датчик нашел широкое применение на летательных аппаратах, в том числе на стратегическом бомбардировщике В-1, истребителях F-14, крылатых ракетах и самолетах в составе вычислителей СВС.

Рис. 4.20. Функциональная схема емкостного датчика давления:

Р – давление; 1 – рабочая диафрагма; 2 – конденсатор; 3 – буферный усилитель; 4 – 20‑разрядный счетчик; 5 – эталонное тактовое устройство 375 кГц; 6 – 20‑разрядный параллельно-последовательный сдвиговый регистр; 7 – двоичный выход при параллельном действии; 8 – двоичный выход при последовательном действии

Необходимо обратить внимание на преимущества частотного выходного сигнала датчика давления как носителя информации:

1. Частотный выходной электрический сигнал обладает высокой помехозащищенностью, так как бывает достаточным сохранить отличие уровней сигналов, соответствующих "единице" и "нулю".

2. Частотный сигнал легко обрабатывается вычислителем (перевод в код) без дополнительных потерь.

3. Слабая зависимость от колебаний питающих напряжений, так как частотный сигнал не теряет свое назначение при изменении напряжения вплоть до 50 %.

4. Частотный сигнал легко измеряется, хорошо интегрируется во времени, что повышает точность. Идеальным интегратором электрических импульсов является счетчик с неограниченным временем интегрирования. Пределом измерения является емкость электрического счетчика.

5. В целом позволяет достичь высокую точность датчика давления порядка 0,01 – 0,02 % от измеряемой величины.

Вибрационно-частотный датчик давления

Вибрационно-частотный датчик давления находит широкое применение наряду с прочими датчиками для измерения статического Рст, полного Рп, и динамического давлений в составе СВС. Его особенность начинается с оригинальности вторичного преобразователя давления непосредственно в частоту. Принцип работы воздушного преобразователя основан на функциональной зависимости частоты резонансных колебаний упругого чувствительного элемента от величины измеряемого давления

. (4.19)

В качестве упругого чувствительного элемента могут быть струна, мембрана, тонкостенный цилиндр и пьезоэлементы.

Рис. 4.21. Принципиальная схема частотного струнного датчика давления:

1 – сильфон; 2 – балка с опорой; 3 – си­ла натяжения струны; 4 – струна; 5 – усилитель; 6 – емкость; 7 – катушка возбуждения колебаний струны

Вторичный преобразователь во всех трех случаях представляет колебательную систему, содержащую инерционный элемент в виде массы, способной накапливать кинетическую энергию, и элемент, способный накапливать потенциальную энергию, в качестве которого выступает упругий элемент.

На рис. 4.21 представлен датчик избыточного давления с вибрирующей струной. Струна имеет первоначальное натяжение Fо при отсутствии избыточного давления Р. При этом струна будет иметь начальную собственную частоту fо. При увеличении давления Р жесткость струны увеличивается, частота растет в соответствии с зависимостью [37]

, (4.20)

где l – длина струны в м; F – сила натяжения струны в Ньютонах; ρ – объемная плотность материала струны в кг/м3; n – номер гармоники колебаний (n =1); S – сечение струны в м2.

В вибрационно-частотных датчиках давления используется система самовозбуждения непрерывной генерации частот. Для этого используется индуктивный и емкостной преобразователи перемещения в электрический сигнал.

Рис. 4.22. Индуктивный

преобразователь

Рис. 4.23. Емкостной

преобразователь

Преобразователь для самовозбуждения 7 подключается к выходу усилителя. В момент подключения усилителя к питанию на струну поступает импульс в виде притяжения (отталкивания). Начинаются колебания струны на собственной частоте. Если бы не последовали следующие импульсы, то колебания затухли бы. Но вслед за первым импульсом колебания струны улавливаются преобразователем съема сигнала 6, усиливаются, нормируются, выдаются на выход датчика и одновременно на преобразователь возбуждения колебаний 7. Наступают непрерывные колебания струны, собственная частота которых примерно пропорциональна измеряемому давлению.

На рис. 4.24 представлена принципиальная схема частотного мембранного датчика абсолютного давления (Рст). Особенностью этого датчика является то, что вторичным преобразователем являются два пьезоэлемента – элемент возбуждения 1 и элемент восприятия сигналов 2.

Рис. 4.24. Принципиальная схема частотного мембранного датчика давления

В основе работы таких элементов лежит пьезоэффект, обеспечивающий преобразование входного электрического напряжения в механическое напряжение в теле мембраны (обратный пьезоэффект) и ответную реакцию по выходу в виде зарядов на электродах 2, возникающих в результате деформаций вибратора-мембраны под действием механических напряжений (прямой пьезоэффект) [38]. Мембрана и корпус изготовлены из одного материала – кварца. Элемент 1 получает импульсы от усилителя и раскачивает мембрану 1. Элемент 2 воспринимает эти колебания, вырабатывает сигнал, пропорциональный собственной частоте мембраны:

, (4.21)

где a – радиус мембраны; f – частота в Гц; h – толщина мембраны; Р – давление в мбарах. Как и в струнном датчике устанавливаются непрерывные колебания, так как с выхода усилителя постоянно поступают сигналы на вход возбуждающего элемента 1.

Американская фирма Бендикс (Bendix Corp.) выпускает мембранный вибрационно-частотный датчик по схеме рис. 4.24 со следующими характеристиками: погрешность – не более 0,01 % от давления; гистерезис 0,1 мм рт. ст.; диапазон абсолютного давления от 0 до 750 мм рт. ст.; частота выходного сигнала от 2,5 до 5, кГц.

На рис. 4.25 представлена принципиальная схема вибрационно-частотного датчика давления с цилиндрическим резонатором.

Рис. 4.25. Принципиальная схема частотного датчика давления с цилиндрическим резонатором:

1 – опорный вакуум; 2 – цилиндр; 3 – катушка возбуждения; 4 – элементы системы самовозбуждения; 5 – катушка съема сигнала; 6 – давление; 7 – корпус; 8 – усилитель; 9 – выход; 10 – основание

Принцип действия датчика основан на зависимости собственной частоты упругого элемента от величины его внутреннего механического напряжения, вызванного действием измеряемого давления. Резонатор 2 расположен внутри герметичного цилиндрического корпуса 7, которые вместе закреплены на общем основании 10. Такой датчик обеспечивает измерение статического или полного давления. Измеряемое давление Рст подается во внутреннюю полость резонатора. Резонансные колебания стенки резонатора возбуждаются при помощи индуктивного преобразователя (рис. 4.22). В таком же преобразователе съема наводится небольшая электродвижущая сила, этот сигнал поступает на усилитель и по каналу обратной связи подается на катушку возбуждения. Устанавливаются незатухающие колебания стенок цилиндрического резонатора на собственной частоте, величина которой зависит от измеряемого давления [37]

, (4.22)

где Е – модуль упругости материала цилиндра; m – приведенная масса в кг; δ – толщина стенки в см (0,01 – 0,03 см); l – длина цилиндра в см (3 – 5 см); b – диаметр цилиндра в см (1,5 – 2 см); Р – давление в кг/см2.

Резонатор изготавливается по специальной технологии из высококачественных сталей. Приведенные здесь формулы весьма ориентировочные. Сверхточные датчики давления изготавливаются по специальным технологиям, которыми обладают немногие фирмы в мире. Датчиками давления по схеме рис. 4.25 с шестидесятых годов занимается английская фирма Солатрон (Solatron). В настоящее время она выпускает серию таких датчиков для СВС гражданских и военных самолетов. Базовый датчик этой фирмы типа NT 3082 (самолет Торнадо) имеет следующие характеристики: погрешность – ± 0,01 % от давления, диапазон давлений (Рп) – от 0 до 2600 мм рт. ст., гистерезис – 0,001 – 0,005 % от диапазона, выходной сигнал – цифровой код, напряжение питания – ± 28 В, потребляемая мощность – 1 Вт, масса – 0,24 кг, габаритные размеры – 62,8 (длина), 24,5 (диаметр).

Пьезоэлектрическими называются кристаллы и текстуры, электризующиеся под действием механических напряжений (прямой пьезоэффект) и деформирующиеся в электрическом поле (обратный пьезоэффект). При этом знак заряда меняется при замене сжатия натяжением. Если электрическое поле меняет знак, то и деформация меняет знак. Такими свойствами обладают материалы кварц, турмалин, ниобат лития, сегнетова соль.

При воздействии электрического поля по поверхности пьезоматериала распространяются волны Рэллея со скоростью v на глубине материала по направлению Y величиной, равной длине волны λ (рис. 4.26).

Рис. 4.26. Волны Рэллея в пьезокристалле

При постоянном воздействии электрического поля на хорошо отполированной поверхности пьезоматериала образуются поверхностные акустические волны (ПАВ). Для возбуждения ПАВ на поверхность материала наносят встречно включенный преобразователь (ВШП), в качестве приемного элемента наносится такой же ВШП на некотором расстоянии l от первого (рис. 4.27).

Рис. 4.27. Принципиальная схема возбуждения и съема ПАВ:

1 – элемент возбуждения; 2 – элемент съема сигналов; lо – шаг ВШП; l – расстояние между центрами ВШП

Два ВШП образуют два электрода. При шаге lo = λ в первом ВШП возбуждаются незатухающие колебания по схеме самовозбуждения, а второй ВШП воспринимает эти колебания.

На выходе второго ВШП образуется напряжение электрического сигнала с частотой

, (4.23)

где v – скорость распространения волны Рэллея, для кварца v = 3159 м/с, величина волны λ = lo (условие возбуждения). При lo = 10 мкм (что достижимо)

Гц ≈ 300 МГц.

Так как под действием давления мембрана деформируется, то λ = lo = f (P). Таким образом, выходной сигнал с элемента 2 есть функция измеряемого давления

. (4.24)

Компенсационный датчик давления

Принцип действия компенсационного датчика давления основан на методе силовой компенсации входного воздействия [39]. Измеряемое давление преобразуется в силу с помощью сильфона, которая сравнивается с эталонной силой, хранящейся в элементе основной обратной связи датчика (рис. 4.28).

Рис. 4.28. Структурная схема датчика давления, построенного на схеме силовой компенсации: 1 – чувствительный элемент; 2 – нуль-орган; 3 – усилитель с двигателем; 4 – основная обратная связь (пружина); 5 – выходное устройство

В связи с тем, что при измерении давления имеют дело с силами, то компенсационную схему называют схемой силовой компенсации. Возможно осуществление множества разновидностей схем и конструкций, построенных на данной схеме, однако все они содержат элементы общего назначения: чувствительный элемент – сильфон 1, нуль-орган 2, усилитель 3, обратную связь (эталон) 4, выходное устройство 5.

Если сравнить структурную схему компенсационного датчика со структурной схемой позиционного датчика давления (рис. 4.29), то увидим принципиальную разницу между ними. В компенсационной схеме большее число элементов охвачено основной обратной связью. Полное уравнение схемы рис. 4.28 имеет вид [39]

. (4.25)

Установившееся значение выходной величины y имеет вид (t → ∞)

. (4.26)

Полное уравнение движения по схеме рис. 4.29 имеет вид

, (4.27)

k22

Рис. 4.29. Структурная схема электромеханического датчика давления, построенного на схеме с использованием хода чувствительного элемента 1 – чувствительный элемент, 2 – вторичный преобразователь, 3 – усилитель с двигателем, 4 – основная обратная связь (электрическая), 5 – выходное устройство

а установившееся значение выходной величины y:

. (4.28)

Сравнивая уравнения (4.26) и (4.28), находим свойство схемы силовой компенсации, заключающееся в том, что в ней на результат измерения влияет меньшее число элементов. Параметры нуль - органа в линейном приближении не оказывают влияния на точность измерения. Практически это свойство тем точнее реализуется, чем больше модель датчика приближается к линейной. В идеальном случае это значит, что в измерительной цепи датчика не должно быть элементов с зоной нечувствительности, а замкнутая цепь следящей системы должна быть астатической.

Устройство нуль - органа работает практически с незначительными перемещениями (в одной точке) в пределах своей характеристики. В связи с этим элементы следящей системы можно подобрать более точно, и работает она более точно. Это второе свойство компенсационной схемы.

В схеме же рис. 4.29 характеристики вторичного преобразователя 2 существенно влияют на качество измерения, как было показано выше.

В позиционной схеме рис. 4.29 чувствительный элемент выполняет очень сложную функцию – принимает информацию об изменении давления и преобразует ее в перемещение нужной величины. Он является сложным преобразователем и движителем одновременно. От него требуются характеристики: высокая чувствительность, отсутствие гистерезиса, стабильность во времени.

Функции чувствительного элемента в компенсационной схеме проще – преобразовывать давление в силу, не совершая значительных перемещений рабочего центра. Идеально – это поршень без трения. Такие задачи, как передавать информацию в решающее устройство в виде перемещения, стабильность во времени, иметь малый гистерезис в этой схеме переносится на элемент обратной связи (механическая пружина, электромагнит). В этом заключается третье свойство компенсационной силовой схемы.

На рис. 4.30 и рис. 4.31 приведены принципиальная и конструктивная схемы компенсационного датчика давления с механической точеной высокоточной пружиной в качестве эталона силы, который был разработан и изготовлен УКБП.

Новизна этого датчика заключается в том, что с целью повышения виброустойчивости, точеная пружина выполнена с витками переменной жесткости.

Рис. 4.30. Принципиальная схема компенсационного датчика давления:

1 – чувствительный элемент, 2 – нуль-орган, 3 – усилитель с двигателем, 4 – пружина, 5 – выходное устройство, 6 – винты, 7 – редуктор, 8 – противовес, 9 – шарнир, 10 – упор

В современных датчиках давления для СВС в качестве эталона силы применяется катушка с намоткой, помещенная в поле постоянного магнита (рис. 4.32). Чувствительным элементом является сильфон. Измеряемое давление поступает в сильфон, вызывает незначительную деформацию, коромысло 7 поворачивается, изменяется индуктивное сопротивление катушек 1, включенных в схему моста. Сигнал разбаланса поступает в усилитель-демодулятор 2, усиливается и поступает в виде постоянного тока в катушку 4, жестко связанную с коромыслом 7. Взаимодействие электрического тока катушки 4 с полем магнита 3 приводит к появлению силы, которая уравновешивает силу сильфона 6. Катушки нуль-органа 1 включены противоположно действию силы сильфона.

При малых деформациях сильфона его жесткость практически постоянна, а значит ток, протекающий в катушке 4, пропорционален измеряемому давлению. Выходным сигналом датчика является напряжение постоянного тока, снимаемое с резистора 5, который включен последовательно с намоткой катушки 4.

Рис. 4.31. Конструктивная схема компенсационного датчика давления

Рис. 4.32. Принципиальная схема компенсационного датчика давления:

1 – нуль-орган; 2 – усилитель; 3 – постоянный магнит; 4 – силовая катушка; 5 – резистор; 6 – сильфон; 7 – коромысло; 8 – безлюфтовый упругий шарнир

Датчиками давления для СВС на схеме силовой компенсации занимаются несколько известных в мире фирм. Но наибольших результатов достигла французская фирма Кроузет (Crouzet). Ее датчики давления типа 43 и 44 для измерения статического и дифференциального давлений имеют следующие характеристики: погрешность от диапазона ± 0,01 %, разрешающая способность 0,00075 мм рт. ст., гистерезис менее 0,0075 мм рт. ст., напряжение питания ± 15 В, потребляемая мощность 1 – 2 Вт, масса 0,26 кг, габаритные размеры .

К недостаткам компенсационных датчиков давления в целом следует отнести то, что выходным сигналом ее является непрерывный аналоговый сигнал. Для его использования в цифровых СВС требуется применение дополнительно высокоразрядного АЦП, что приводит к потере точности и удорожанию системы.

Полупроводниковый датчик давления

С позиций принятой здесь методики оценки принципа действия датчиков давления, полупроводниковый датчик имеет все признаки типовой структурной схемы рис. 4.7. В нем имеется упругий чувствительный элемент, вторичный преобразователь и более вероятнее по сравнению с другими датчиками в нем имеется электронный блок обработки сигналов.

Особенностью полупроводникового датчика давления является то, что его чувствительный элемент к давлению изготавливается из полупроводникового материала, например, кремния или сапфира. В качестве вторичного преобразователя применяется также полупроводниковый тензорезистор р-типа проводимости, например. Тензорезистор по полупроводниковой планарной технологии вживляется в тело мембраны и соединяются с ним на молекулярном уровне во избежание появления эффекта ползучести характеристики. Упругая мембрана иногда изготавливается из монокристалла в виде колпачка или в виде пластины.

Рабочие тензорезисторы располагаются вдоль радиуса мембраны для получения максимальной чувствительности. При действии давления мембрана деформируется, ее незначительное перемещение передается на тензорезисторы, удельное сопротивление которых изменяется пропорционально измеряемому давлению.

Чтобы получить на выходе датчика электрический сигнал, его тензорезисторы подключаются к электрическому напряжению по схеме уравновешенного моста Уитстона. Для полупроводникового датчика предпочтительным напряжением является напряжение постоянного тока, что исключает балансировку моста по фазе и вредные помехи. Мост электрически уравновешивается при начальном значении измеряемого давления. Дальнейшие изменения напряжения (тока) с моста будут находиться в диапазоне измеряемого давления.

Особенностью полупроводникового тензорезистора является его высокая чувствительность к деформации по сравнению с проволочными. В образовании тензоэффекта участвуют геометрические и объемные изменения полупроводникового тензорезистора под действием деформации упругого чувствительного элемента. Причем геометрические изменения приводят только к 2 % изменения электрического сопротивления тензорезистора. Остальные 98 % – за счет объемных изменений [42].

В связи с чрезвычайно малыми перемещениями и деформациями упругого чувствительного элемента в процессе измерения его стали называть твердотельным. Его перемещения находятся на уровне 10-9 м. Это чрезвычайно малые перемещения, которые, тем не менее, необходимо удерживать при достижении сверхвысоких точностей.

На рис. 4.33 приведена электрическая схема полупроводникового датчика давления. Она представляет собой четырехплечий мост Уитстона с элементами компенсации по температуре и его балансировки. Все элементы схемы могут располагаться в теле чувствительного элемента, кроме согласующего выход R10. Однако это уже касается интегрального полупроводникового датчика давления.

Полупроводниковыми твердотельными датчиками давления с упругой мембраной из монокристалла кремния успешно занимается форма Хонеувелл (Honeywell, США) (рис. 4.34).

Рис. 4.33. Электрическая схема датчика давления с полупроводниковыми тензорезисторами:

R1, R2, R3, R4 – полупроводниковые тензорезисторы; R5 – резистор для согласования внутреннего сопротивления моста; R6, R7 – резисторы для балансировки моста; R8, R9 – резисторы для температурной компенсации моста; R10 – резистор для согласования выходного сигнала

Несмотря на очевидные преимущества цифрового кодового сигнала в некоторых современных датчиках давления предусматриваются и аналоговые выходы, как это сделано в схеме на рис. 4.34. Считается, что самым надежным является сигнал непосредственно с резистивного моста.

Рис. 4.34. Функциональная схема полупроводникового датчика давления:

1 – мембрана; 2 – элементы моста на мембране; 3 – мост; 4 – усилитель; 5 – фильтр; 6 ‑ компаратор напряжения; 7 ‑ преобразователь-генератор; 8 – усилитель; 9 – источник постоянного тока

Наиболее перспективными датчиками для СВС военных и гражданских летательных аппаратов являются: полупроводниковый с использованием тензорезистивного и пьезоэлектрического эффектов; вибрационно-частотный; емкостный. Основная погрешность датчиков должна быть не более 0,005 – 0,01 % от измеряемого давления; потребляемая мощность не более 1 – 1,5 Вт; средняя наработка на отказ не менее 40000 часов; назначенный ресурс не менее 25000 часов; календарный срок эксплуатации не менее 25 лет; масса порядка 0,25 кг в минимальном габаритном объеме. Только такие характеристики датчиков давления позволяют реализовать требования НЛГС к параметрам движения в СВС.

4.4. Коррекция погрешностей восприятия статического давления

Погрешность восприятия статического давления (Рст) складывается из погрешности изолированного приемника и дополнительных погрешностей, связанных с искажениями воздушного потока в том месте фюзеляжа, где установлен приемник статического давления (рис. 3.11). Согласно НЛГС и американскому стандарту ТsO-C16 инструментальная погрешность изолированного приемника статического давления не должна превышать ~ 0,05q в диапазоне измеряемых скоростей. Например, при скорости полета 100 км/ч погрешность должна быть не более 0,2 мм рт. ст.; при скорости 400 км/ч – 0,8 мм рт. ст.; при скорости 500 км/ч – 1 мм рт. ст.; при скорости 600 км/ч – 1,2 мм рт. ст.; при скорости 800 км/ч – 1,5 мм рт. ст.

При установке приемника Рст погрешность может возрасти до недопустимых величин. Для гражданских самолетов допустимая суммарная погрешность приемника Рст в переводе на скорость полета не должна превышать 10 км/ч [4]. Достигается приемлемая точность по давлению Рст путем выноса приемника за пределы фюзеляжа при скорости полета М > 0,95 или путем инструментальной коррекции при полете со скоростями М ≤ 0,95.

Наиболее распространенными являются два метода коррекции этой погрешности: 1 – коррекция в механическом указателе высоты или в системе СВС и 2 – аэродинамическая коррекция непосредственно в самом приемнике Рст.

Для первого случая коррекции каждый приемник Рст должен иметь тарировочную таблицу поправок на конкретном самолете. Простейшим случаем коррекции погрешностей по Рст является поправка показаний барометрического высотомера по таблице, которая находится в поле зрения каждого пилота.

Самым привлекательным методом является коррекция за счет конструктивных мер в самом приемнике и установке его в том месте фюзеляжа, где помехи известны и минимальны (см. рис. 2.11, рис. 2.12, рис. 3.14).

Коррекция погрешности восприятия Рст в современных СВС осуществляется следующим образом. В память цифрового вычислителя вводятся стандартные характеристики ΔРст = f(M).

Рис. 4.35. Стандартная зависимость погрешности приемника статического давления на борту самолета

Согласно нормам АРИНК-706 в дозвуковых СВС должно быть 16 стандартных характеристик, что и сделано в СВС-85 для гражданских российских самолетов. При этом к стандартным характеристикам предъявляются следующие требования:

1 – погрешность приемника Рст зависит либо от числа М, либо от отношения Рд/ Рст;

2 – при значении М 0,2 погрешность ΔРст ≈ 0;

3 – максимальное значение погрешности при М = 1 должно быть не более 0,04q;

4 – характеристика ΔРст = f(М) должна быть достаточно плавной, без перегибов;

5 – погрешность после коррекции по высоте полета должна быть не более 1,5 м при Н = 7500 м;

6 – смена характеристики производится изготовителем СВС по запросу заказчика после удовлетворения требований к ней.

В СВС с аэродинамической коррекцией могут быть точные и загрубленные каналы по выходным параметрам. Приведенные выше формульные зависимости первичных параметров и параметров движения видоизменяются: дополнительно появляются зависимости, в которых учитывается скомпенсированное значение Рст. Вводятся символы: с – скомпенсированный, нс – нескомпенсированный параметр.

Математическая модель современной СВС в общем виде следующая.

– (4.29)

скомпенсированное полное значение;

– (4.30)

нескомпенсированный скоростной напор;

– (4.31)

скомпенсированный скоростной напор;

– (4.32)

скомпенсированная индикаторная скорость при vинд.сao;

– (4.33)

нескомпенсированное отношение давлений Рп и Рст;

– (4.34)

скомпенсированное отношение давлений Рп и Рст;

– (4.35)

нескомпенсированное отношение давлений Рд и Рст;

– (4.36)

скомпенсированное отношение давлений Рд и Рст;

– (4.37)

скомпенсированная температура торможения;

– (4.38)

скомпенсированная температура наружного воздуха;

– (4.39)

нескомпенсированная истинная скорость;

скомпенсированная истинная скорость;

– (4.40)

зависимость скомпенсированного давления Pд от скомпенсированной истинной скорости.

Здесь приняты обозначения: a – скорость звука, aо – значение скорости звука при нормальных условиях по стандартной атмосфере, k – отношение теплоемкостей, Рст о – нормальное атмосферное давление.

До полной математической модели СВС согласно структурным схемам рис. 4.1 и рис. 4.3 тут не хватает математических моделей αист и βист , которые рассматриваются в шестой главе.

В связи с тем, что при измерении давления имеют дело с силами, то компенсационную схему называют схемой силовой компенсации. Возможно осуществление множества разновидностей схем и конструкций, построенных на данной схеме, однако все они содержат элементы общего назначения: чувствительный элемент – сильфон 1, нуль-орган 2, усилитель 3, обратную связь (эталон) 4, выходное устройство 5.

Если сравнить структурную схему компенсационного датчика со структурной схемой позиционного датчика давления (рис. 4.29), то увидим принципиальную разницу между ними. В компенсационной схеме большее число элементов охвачено основной обратной связью. Полное уравнение схемы рис. 4.28 имеет вид [39]

. (4.25)

Установившееся значение выходной величины y имеет вид (t → ∞)

. (4.26)

Полное уравнение движения по схеме рис. 4.29 имеет вид

, (4.27)

k22

Рис. 4.29. Структурная схема электромеханического датчика давления, построенного на схеме с использованием хода чувствительного элемента 1 – чувствительный элемент, 2 – вторичный преобразователь, 3 – усилитель с двигателем, 4 – основная обратная связь (электрическая), 5 – выходное устройство

а установившееся значение выходной величины y:

. (4.28)

Сравнивая уравнения (4.26) и (4.28), находим свойство схемы силовой компенсации, заключающееся в том, что в ней на результат измерения влияет меньшее число элементов. Параметры нуль - органа в линейном приближении не оказывают влияния на точность измерения. Практически это свойство тем точнее реализуется, чем больше модель датчика приближается к линейной. В идеальном случае это значит, что в измерительной цепи датчика не должно быть элементов с зоной нечувствительности, а замкнутая цепь следящей системы должна быть астатической.

Устройство нуль - органа работает практически с незначительными перемещениями (в одной точке) в пределах своей характеристики. В связи с этим элементы следящей системы можно подобрать более точно, и работает она более точно. Это второе свойство компенсационной схемы.

В схеме же рис. 4.29 характеристики вторичного преобразователя 2 существенно влияют на качество измерения, как было показано выше.

В позиционной схеме рис. 4.29 чувствительный элемент выполняет очень сложную функцию – принимает информацию об изменении давления и преобразует ее в перемещение нужной величины. Он является сложным преобразователем и движителем одновременно. От него требуются характеристики: высокая чувствительность, отсутствие гистерезиса, стабильность во времени.

Функции чувствительного элемента в компенсационной схеме проще – преобразовывать давление в силу, не совершая значительных перемещений рабочего центра. Идеально – это поршень без трения. Такие задачи, как передавать информацию в решающее устройство в виде перемещения, стабильность во времени, иметь малый гистерезис в этой схеме переносится на элемент обратной связи (механическая пружина, электромагнит). В этом заключается третье свойство компенсационной силовой схемы.

На рис. 4.30 и рис. 4.31 приведены принципиальная и конструктивная схемы компенсационного датчика давления с механической точеной высокоточной пружиной в качестве эталона силы, который был разработан и изготовлен УКБП.

Новизна этого датчика заключается в том, что с целью повышения виброустойчивости, точеная пружина выполнена с витками переменной жесткости.

Рис. 4.30. Принципиальная схема компенсационного датчика давления:

1 – чувствительный элемент, 2 – нуль-орган, 3 – усилитель с двигателем, 4 – пружина, 5 – выходное устройство, 6 – винты, 7 – редуктор, 8 – противовес, 9 – шарнир, 10 – упор

В современных датчиках давления для СВС в качестве эталона силы применяется катушка с намоткой, помещенная в поле постоянного магнита (рис. 4.32). Чувствительным элементом является сильфон. Измеряемое давление поступает в сильфон, вызывает незначительную деформацию, коромысло 7 поворачивается, изменяется индуктивное сопротивление катушек 1, включенных в схему моста. Сигнал разбаланса поступает в усилитель-демодулятор 2, усиливается и поступает в виде постоянного тока в катушку 4, жестко связанную с коромыслом 7. Взаимодействие электрического тока катушки 4 с полем магнита 3 приводит к появлению силы, которая уравновешивает силу сильфона 6. Катушки нуль-органа 1 включены противоположно действию силы сильфона.

При малых деформациях сильфона его жесткость практически постоянна, а значит ток, протекающий в катушке 4, пропорционален измеряемому давлению. Выходным сигналом датчика является напряжение постоянного тока, снимаемое с резистора 5, который включен последовательно с намоткой катушки 4.

Рис. 4.31. Конструктивная схема компенсационного датчика давления

Рис. 4.32. Принципиальная схема компенсационного датчика давления:

1 – нуль-орган; 2 – усилитель; 3 – постоянный магнит; 4 – силовая катушка; 5 – резистор; 6 – сильфон; 7 – коромысло; 8 – безлюфтовый упругий шарнир

Датчиками давления для СВС на схеме силовой компенсации занимаются несколько известных в мире фирм. Но наибольших результатов достигла французская фирма Кроузет (Crouzet). Ее датчики давления типа 43 и 44 для измерения статического и дифференциального давлений имеют следующие характеристики: погрешность от диапазона ± 0,01 %, разрешающая способность 0,00075 мм рт. ст., гистерезис менее 0,0075 мм рт. ст., напряжение питания ± 15 В, потребляемая мощность 1 – 2 Вт, масса 0,26 кг, габаритные размеры .

К недостаткам компенсационных датчиков давления в целом следует отнести то, что выходным сигналом ее является непрерывный аналоговый сигнал. Для его использования в цифровых СВС требуется применение дополнительно высокоразрядного АЦП, что приводит к потере точности и удорожанию системы.

Полупроводниковый датчик давления

С позиций принятой здесь методики оценки принципа действия датчиков давления, полупроводниковый датчик имеет все признаки типовой структурной схемы рис. 4.7. В нем имеется упругий чувствительный элемент, вторичный преобразователь и более вероятнее по сравнению с другими датчиками в нем имеется электронный блок обработки сигналов.

Особенностью полупроводникового датчика давления является то, что его чувствительный элемент к давлению изготавливается из полупроводникового материала, например, кремния или сапфира. В качестве вторичного преобразователя применяется также полупроводниковый тензорезистор р-типа проводимости, например. Тензорезистор по полупроводниковой планарной технологии вживляется в тело мембраны и соединяются с ним на молекулярном уровне во избежание появления эффекта ползучести характеристики. Упругая мембрана иногда изготавливается из монокристалла в виде колпачка или в виде пластины.

Рабочие тензорезисторы располагаются вдоль радиуса мембраны для получения максимальной чувствительности. При действии давления мембрана деформируется, ее незначительное перемещение передается на тензорезисторы, удельное сопротивление которых изменяется пропорционально измеряемому давлению.

Чтобы получить на выходе датчика электрический сигнал, его тензорезисторы подключаются к электрическому напряжению по схеме уравновешенного моста Уитстона. Для полупроводникового датчика предпочтительным напряжением является напряжение постоянного тока, что исключает балансировку моста по фазе и вредные помехи. Мост электрически уравновешивается при начальном значении измеряемого давления. Дальнейшие изменения напряжения (тока) с моста будут находиться в диапазоне измеряемого давления.

Особенностью полупроводникового тензорезистора является его высокая чувствительность к деформации по сравнению с проволочными. В образовании тензоэффекта участвуют геометрические и объемные изменения полупроводникового тензорезистора под действием деформации упругого чувствительного элемента. Причем геометрические изменения приводят только к 2 % изменения электрического сопротивления тензорезистора. Остальные 98 % – за счет объемных изменений [42].

В связи с чрезвычайно малыми перемещениями и деформациями упругого чувствительного элемента в процессе измерения его стали называть твердотельным. Его перемещения находятся на уровне 10-9 м. Это чрезвычайно малые перемещения, которые, тем не менее, необходимо удерживать при достижении сверхвысоких точностей.

На рис. 4.33 приведена электрическая схема полупроводникового датчика давления. Она представляет собой четырехплечий мост Уитстона с элементами компенсации по температуре и его балансировки. Все элементы схемы могут располагаться в теле чувствительного элемента, кроме согласующего выход R10. Однако это уже касается интегрального полупроводникового датчика давления.

Полупроводниковыми твердотельными датчиками давления с упругой мембраной из монокристалла кремния успешно занимается форма Хонеувелл (Honeywell, США) (рис. 4.34).

Рис. 4.33. Электрическая схема датчика давления с полупроводниковыми тензорезисторами:

R1, R2, R3, R4 – полупроводниковые тензорезисторы; R5 – резистор для согласования внутреннего сопротивления моста; R6, R7 – резисторы для балансировки моста; R8, R9 – резисторы для температурной компенсации моста; R10 – резистор для согласования выходного сигнала

Несмотря на очевидные преимущества цифрового кодового сигнала в некоторых современных датчиках давления предусматриваются и аналоговые выходы, как это сделано в схеме на рис. 4.34. Считается, что самым надежным является сигнал непосредственно с резистивного моста.

Рис. 4.34. Функциональная схема полупроводникового датчика давления:

1 – мембрана; 2 – элементы моста на мембране; 3 – мост; 4 – усилитель; 5 – фильтр; 6 ‑ компаратор напряжения; 7 ‑ преобразователь-генератор; 8 – усилитель; 9 – источник постоянного тока

Наиболее перспективными датчиками для СВС военных и гражданских летательных аппаратов являются: полупроводниковый с использованием тензорезистивного и пьезоэлектрического эффектов; вибрационно-частотный; емкостный. Основная погрешность датчиков должна быть не более 0,005 – 0,01 % от измеряемого давления; потребляемая мощность не более 1 – 1,5 Вт; средняя наработка на отказ не менее 40000 часов; назначенный ресурс не менее 25000 часов; календарный срок эксплуатации не менее 25 лет; масса порядка 0,25 кг в минимальном габаритном объеме. Только такие характеристики датчиков давления позволяют реализовать требования НЛГС к параметрам движения в СВС.

4.4. Коррекция погрешностей восприятия статического давления

Погрешность восприятия статического давления (Рст) складывается из погрешности изолированного приемника и дополнительных погрешностей, связанных с искажениями воздушного потока в том месте фюзеляжа, где установлен приемник статического давления (рис. 3.11). Согласно НЛГС и американскому стандарту ТsO-C16 инструментальная погрешность изолированного приемника статического давления не должна превышать ~ 0,05q в диапазоне измеряемых скоростей. Например, при скорости полета 100 км/ч погрешность должна быть не более 0,2 мм рт. ст.; при скорости 400 км/ч – 0,8 мм рт. ст.; при скорости 500 км/ч – 1 мм рт. ст.; при скорости 600 км/ч – 1,2 мм рт. ст.; при скорости 800 км/ч – 1,5 мм рт. ст.

При установке приемника Рст погрешность может возрасти до недопустимых величин. Для гражданских самолетов допустимая суммарная погрешность приемника Рст в переводе на скорость полета не должна превышать 10 км/ч [4]. Достигается приемлемая точность по давлению Рст путем выноса приемника за пределы фюзеляжа при скорости полета М > 0,95 или путем инструментальной коррекции при полете со скоростями М ≤ 0,95.

Наиболее распространенными являются два метода коррекции этой погрешности: 1 – коррекция в механическом указателе высоты или в системе СВС и 2 – аэродинамическая коррекция непосредственно в самом приемнике Рст.

Для первого случая коррекции каждый приемник Рст должен иметь тарировочную таблицу поправок на конкретном самолете. Простейшим случаем коррекции погрешностей по Рст является поправка показаний барометрического высотомера по таблице, которая находится в поле зрения каждого пилота.

Самым привлекательным методом является коррекция за счет конструктивных мер в самом приемнике и установке его в том месте фюзеляжа, где помехи известны и минимальны (см. рис. 2.11, рис. 2.12, рис. 3.14).

Коррекция погрешности восприятия Рст в современных СВС осуществляется следующим образом. В память цифрового вычислителя вводятся стандартные характеристики ΔРст = f(M).

Рис. 4.35. Стандартная зависимость погрешности приемника статического давления на борту самолета

Согласно нормам АРИНК-706 в дозвуковых СВС должно быть 16 стандартных характеристик, что и сделано в СВС-85 для гражданских российских самолетов. При этом к стандартным характеристикам предъявляются следующие требования:

1 – погрешность приемника Рст зависит либо от числа М, либо от отношения Рд/ Рст;

2 – при значении М 0,2 погрешность ΔРст ≈ 0;

3 – максимальное значение погрешности при М = 1 должно быть не более 0,04q;

4 – характеристика ΔРст = f(М) должна быть достаточно плавной, без перегибов;

5 – погрешность после коррекции по высоте полета должна быть не более 1,5 м при Н = 7500 м;

6 – смена характеристики производится изготовителем СВС по запросу заказчика после удовлетворения требований к ней.

В СВС с аэродинамической коррекцией могут быть точные и загрубленные каналы по выходным параметрам. Приведенные выше формульные зависимости первичных параметров и параметров движения видоизменяются: дополнительно появляются зависимости, в которых учитывается скомпенсированное значение Рст. Вводятся символы: с – скомпенсированный, нс – нескомпенсированный параметр.

Математическая модель современной СВС в общем виде следующая.

– (4.29)

скомпенсированное полное значение;

– (4.30)

нескомпенсированный скоростной напор;

– (4.31)

скомпенсированный скоростной напор;

– (4.32)

скомпенсированная индикаторная скорость при vинд.сao;

– (4.33)

нескомпенсированное отношение давлений Рп и Рст;

– (4.34)

скомпенсированное отношение давлений Рп и Рст;

– (4.35)

нескомпенсированное отношение давлений Рд и Рст;

– (4.36)

скомпенсированное отношение давлений Рд и Рст;

– (4.37)

скомпенсированная температура торможения;

– (4.38)

скомпенсированная температура наружного воздуха;

– (4.39)

нескомпенсированная истинная скорость;

скомпенсированная истинная скорость;

– (4.40)

зависимость скомпенсированного давления Pд от скомпенсированной истинной скорости.

Здесь приняты обозначения: a – скорость звука, aо – значение скорости звука при нормальных условиях по стандартной атмосфере, k – отношение теплоемкостей, Рст о – нормальное атмосферное давление.

До полной математической модели СВС согласно структурным схемам рис. 4.1 и рис. 4.3 тут не хватает математических моделей αист и βист , которые рассматриваются в шестой главе.

Глава 5

ИЗМЕРИТЕЛИ МАЛЫХ СКОРОСТЕЙ

В третьей главе при рассмотрении скоростей полета самолета в пределах манометрического способа измерения было установлено, что наибольшая сложность заключается в измерении малых скоростей. Показано, что доминирующей статической инструментальной погрешностью измерения приборной скорости в диапазоне малых скоростей является погрешность от приведенной силы трения механизма (см. формулу 3.21). В диапазоне околонулевых скоростей погрешность возрастает до бесконечности из-за малого градиента по давлению (таблица 3.7, рис. 3.21).

При рассмотрении полной структурной схемы указателя приборной скорости (рис. 3.5) было сделано замечание, что в динамическом режиме работы прибора следует учитывать все элементы схемы, в том числе пневмопроводы, объемы полостей корпуса, манометрической коробки. Для статического режима справедливо и то, что приборная скорость зависит только от динамического давления, что она не зависит от статического давления и, значит, не обладает методической погрешностью от изменения высоты. С этим утверждением можно мириться до тех пор, пока измеряются медленно меняющиеся давления на входе прибора. Картина резко меняется при рассмотрении динамического процесса измерения скорости.

Эффективнее всего это явление рассмотреть применительно к условиям работы указателя приборной скорости на вертолете.

Принципиальной особенностью вертолета является наличие несущего винта (НВ), создающего воздушные вихри по всей поверхности его фюзеляжа. Интенсивность вихрей зависит от массы вертолета, от его конструкции. Как было показано во второй главе (таблица 2.5), скорость распространения вихря (скорость отбрасывания НВ) может достигать величин от ≈ 50 до 130 км/ч. В режиме висения весь этот поток направлен вертикально к Земле и омывает фюзеляж. Приемники давлений Рст и Рп тоже омываются этим потоком, попадая частично или полностью в их входы. На фоне такой большой помехи невозможно измерить ничтожно малые сигналы по давлению, которые соответствуют околонулевым скоростям (рис. 5.1).

При косом движении вертолета вихрь от НВ уходит от носовой части фюзеляжа и приемники давлений очищаются от него при уже достаточно большой скорости полета (50 – 70 км/ч). За этим пределом измерение скорости может происходить известным манометрическим способом. И наоборот, до скорости очищения приемников от вихря их каналы полностью закрыты помехой от НВ. Процесс измерения невозможен. Указатель скорости фиксирует только помеху от НВ.

Рис. 5.1. Соотношение погрешности от вихря несущего винта с полезным

сигналом указателя приборной скорости на вертолете: 1 – границы вихря;

2 – полезный сигнал

Учитывая, что манометрический способ измерения скорости давно стал традиционным, надежным, хорошо освоенным в производстве и в эксплуатации, заманчивым является попытка использовать его для измерения малых скоростей полета, хотя бы по направлению движения вертолета по оси Ох. Для этого воспользуемся теорией структурного анализа и теорией абсолютно инвариантных систем автоматического управления.

Принципы абсолютной инвариантности

Смысл достижения абсолютной инвариантности (независимости) заключается в том, что если удалось достичь ее по какой-то координате Х(t) по отношению к помехе F(t), то при отсутствии других помех и нулевом начальном значении, эта переменная тождественно равна нулю на выходе [43].

Со стороны координаты Х(t) никаких воздействий на систему нет, хотя физические аппаратурные связи есть. Данная теория позволяет произвести синтез систем наилучшего качества при весьма ограниченной априорной информации о внешних возмущениях или помехах в системе. Максимально, что может быть известно о помехах, это ограничения их по модулю.

Математически это выглядит так, что если имеется передаточная функция по каналу действия помехи

,

то необходимым условием абсолютной инвариантности является: A(S) = 0, B(S) ≠ 0. Тогда: Х(S) = W(S) F(S) = 0·F(S) = 0.

Необходимое условие формулируется так.

Для достижения абсолютной инвариантности по координате Х(t) относительно внешнего возмущения F(t) необходимо, чтобы передаточная функция W(S) между точкой приложения внешнего воздействия F(t) и точкой измерения (съема) сигнала Х(t) была равна нулю при предположении, что и все остальные воздействия равны нулю.

Это общее условие для принципа абсолютной инвариантности. Но не всякая система в реальных условиях может быть абсолютно инвариантной. Необходимо из множества реальных систем отбирать те, к которым применима теория абсолютной инвариантности.

Критерий инвариантности, критерий реализуемости условий инвариантности формируется следующим образом: необходимым (но не достаточным) признаком реализации абсолютно инвариантной системы является наличие в схеме по меньшей мере двух каналов передачи возмущающего воздействия F(t) между точкой его приложения и точкой, относительно которой достигается инвариантность (принцип двухканальности).

Поскольку в абсолютно инвариантной системе W(S) = 0, то это может быть в том случае, если передаточную функцию можно представить в виде разности минимум двух передаточных функций:

.

Роль структурного анализа в данном случае велика, ибо только правильный выбор структуры позволяет найти абсолютно инвариантные системы, которые могут быть физически реализованы.

Достаточные условия реализуемости связаны с физической выполнимостью требований абсолютной инвариантности при помощи устройств, состоящих только из физически осуществимых звеньев.

С позиций этой теории рассмотрим измеритель приборной скорости летательного аппарата (самолета, вертолета) в режиме полета на малых скоростях.

Под помехой F(t) будем иметь в виду помехи по каналам давлений Рп и Рст, а под выходной координатой – измеряемую скорость. В дальнейшем станет очевидным, что структурная схема этого измерителя есть ничто иное, как естественно двухканальная система автоматического управления.

5.1. Инвариантный измеритель скорости

В настоящее время информацию о скорости самолета получают с помощью аэродинамических измерителей, которые нуждаются в улучшении метрологических характеристик. Как информационный параметр скорость полета (число М) характеризует длиннопериодическое движение с низкими рабочими частотами. Высокочастотные помехи, например шумы решающих и выходных устройств измерителя скорости, нейтрализуются с помощью фильтров. Однако существует динамическая погрешность, пренебрегать которой нельзя и оценка которой возможна при исследовании системы "среда полета – самолет – измеритель скорости". Среда в данном случае характеризуется физическими свойствами атмосферы: изменением статического давления Рст в зависимости от высоты полета над уровнем моря, горизонтальными и вертикальными составляющими порывов ветра. Тип самолета определяет максимальное ускорение по направлению полета, скороподъемность, скорость изменения угла атаки. Параметры измерителя скорости отражают степень рациональности его конструкции. Особенностью рассматриваемых измерителей является наличие пневматических емкостей и сравнительно длинных воздухопроводов, в связи с чем постоянные времени каналов полного Рп и статического Рст давлений достаточно велики [44].

Рис. 5.2. Структурная схема измерителя воздушной приборной скорости самолета

Рассмотрим простейший измеритель воздушной приборной скорости (рис. 5.2) в виде двухканальной системы автоматического регулирования, где W1(S), W2(S), W3(S) – передаточные функции каналов полного, статического давлении, решающего и выходного устройств измерителя. Обратим внимание на то, как формируется в измерителе информация о скоростном напоре Рд . Видно, что статическое давление Рст проходит через оба звена W2(S) и W1(S). Скорость v определяется искаженной величиной скоростного напора , так как он зависит от искаженных величин полного и статического давлений. В соответствии со структурной схемой напишем систему уравнений измерителя скорости в операторной форме.

, (5.1)

, (5.2)

, (5.3)

, (5.4)

. (5.5)

Решая систему уравнений (5.1 – 5.5) относительно скорости v(s), получим полное уравнение измерителя

. (5.6)

Из уравнения видно, что в отличие от стационарного режима в динамическом режиме скорость v зависит от двух величин: Рд и Рст. Передаточные функции каналов измерителя представим в виде

; , (5.7)

где τ1 , τ2 , Т1 , Т2 – время чистого запаздывания и постоянные времени каналов полного и статического давлений. С учетом значений передаточных функции из уравнения (5.6) получим выражение динамической погрешности при скачкообразных возмущениях по Рд и Рст при τ1 = τ2 = 0.

, (5.8)

где dv/dPд – производная зависимости воздушной приборной скорости от скоростного напора при определенном значении скорости полета v; ΔРд и ΔРст – уровни возмущений по каналам Рд и Рст.

Из-за малости величин τ1 и τ2 и для упрощения дальнейших исследований их влиянием на погрешность пренебрегаем. Первая составляющая в квадратных скобках выражения (5.8) определяет погрешность по каналу Рп. Учитывая, что приращение скорости самолета в длиннопериодическом движении происходит медленно и постоянная времени Т1 по сравнению с Т2, как правило, мала, то в качестве доминирующей можно рассматривать погрешность, связанную с изменением статического давления или другими возмущениями атмосферы. Эта погрешность определяется вторым слагаемым выражения (5.8)

, (5.9)

а ее максимальное значение можно представить как

. (5.10)

Если возмущение по каналу Рст изменяется по пропорциональному закону ΔРст (t) = Kt , то исследуемая погрешность будет иметь вид

, (5.11)

где К – уровень возмущения по каналу Рст.

В данном случае исследуется динамическая погрешность скорости полета самолета с учетом только пневматических параметров каналов Рсти Рп, что совпадает с вариантом, когда собственные динамические характеристики измерителя близки к идеальным. Это дает возможность подчеркнуть физическую сущность исследуемой динамической погрешности, возникающей из-за естественной связи каналов Рп и Рст измерителя. Целесообразность этого подтверждается и тем, что в полете меняются только параметры пневматических каналов.

На рис. 5.3 показана зависимость постоянных времени каналов Рст и Рп, от высоты полета при различных скоростях, где – кратность изменения постоянной времени в канале Рп; Т01 – начальное значение Т1 в нормальных условиях; Р0– начальное атмосферное давление; Рд(v) – давление скоростного напора в зависимости от скорости полета; – кратность изменения постоянной времени в канале Рст; Т02 – начальное значение T2 в нормальных условиях.

Рис. 5.3. Зависимость постоянных времени Т1 и Т2 от режима полета самолета:

1 – v = 1350 км/ч;

2 – v = 500 км/ч;

3 – v = 200 км/ч

Из рис. 5.3 следует, что Т1 меняется значительно меньше, чем Т2 . Такое расхождение в изменении постоянных времени каналов усиливает связь между ними и увеличивает динамическую погрешность, что следует из уравнений (5.9) – (5.11). Погрешность измерителя скорости возрастает при увеличении отношения Т21 и при 10-кратном превышении значения T2может достигать 70% (рис. 5.4 – 5.5).

Рис. 5.4. Погрешность измерителя скорости в зависимости от соотношения постоянных времени Т1 и Т2 :

1 – Т2/Т1 = 10; 2 – Т2/Т1 = 6;

3 – Т2/Т1 = 4; 4 – Т2/Т1 = 2

Рис. 5.5. Зависимость максимальной

динамической погрешности измерителя скорости от отношения Т1/Т2

Необходимо подчеркнуть, что установленная связь между каналами приводит к необходимости исследования динамической погрешности измерителя скорости также в короткопериодическом движении самолета. Изменение высоты полета и угла атаки, порывы ветра – все эти факторы вызывают появление дополнительной методической погрешности измерителя скорости, которая на некоторых режимах полета может достигать недопустимо большой величины. Например, погрешность от потока несущего винта вертолета может составить 70 км/ч, что приводит на малых скоростях полета к полной неработоспособности измерителя скорости. На пассажирских и транспортных самолетах проявление погрешности наиболее вероятно на режимах взлета и посадки, маршруте при турбулентной атмосфере, при порывах ветра. Эту динамическую погрешность можно устранить или свести к минимуму, если выполнить необходимое для двухканальной системы автоматического регулирования условие инвариантности (равенства передаточных функции каналов):

. (5.12)

В этом случае погрешности, определяемые уравнениями (5.9) – (5.11) полностью отсутствуют, т.е. измеритель становится инвариантным к аэродинамическим возмущениям в процессе полета.

Согласно теории инвариантности систем условие (5.12) является необходимым, но не достаточным. Нужно показать физическую реализуемость предложенного условия инвариантности. В линейной динамической модели измерителя с передаточными функциями каналов, соответствующими формулам (5.7) условие абсолютной инвариантности к аэродинамическим возмущениям сводится к двум равенствам:

τ1 = τ2 , (5.13)

Т1 = Т2 . (5.14)

Время чистого запаздывания τ в .каналах зависит от длины воздухопроводов и скорости звука. Из этого следует, что условие (5.13) выполняется простым уравниванием длин пневматических каналов давлений Рст и Рп .

Постоянные времени трактов равны [45]

;

,

где μ0 коэффициент динамической вязкости воздуха в нормальных условиях; l1, l2 – длина воздухопроводов полного и статического давлений; V1, V2 – внутренние объемы пневматических камер каналов полного и статического давлений; d1, d2 – внутренние диаметры воздухопроводов полного и статического давлений; Qн, Qз – абсолютная температура у земли и на высоте полета самолета.

Учитывая, что каналы Рп и Рст находятся в одних температурных условиях, зависимость (5.14) можно записать в виде Т2/Т1 = 1 или

. (5.15)

Из выражения (5.15) видно, что выполнение условия инвариантности можно обеспечить, изменяя либо диаметры воздухопроводов, либо внутренние объемы пневматических камер измерителя. В случае изменения диаметра воздухопровода статического давления необходимо соблюдать зависимость

, (5.16)

где d02 – начальное значение диаметра d2 (рис. 5.6).

Рис. 5.6. Изменение диаметра трубопровода канала статического давления в зависимости от числа М

Если условие инвариантности поддерживается за счет изменения внутреннего объема пневматической камеры полного давления, закон регулирования объема имеет вид

, (5.17)

где ΔV1 и V01 – изменение и начальное значение объема V1.

Регулирование объема в канале полного давления по закону (5.7) является наиболее удобным способом обеспечения инвариантности.

Измеритель приборной воздушной скорости (рис. 5.7) защищен от аэродинамических возмущений. В стационарном режиме полета давление Рп, поступающее на вход приемника воздушного давления 1 (ПВД), подается по трубопроводу в переменную пневматическую емкость 2, в объем чувствительного элемента измерителя скорости 3 и преобразователь 4 отношения давлений Рд и Рст . Статическое давление Рст по трубопроводу поступает в корпус измерителя скорости 3. Чувствительный элемент воспринимает давление Рд как разность давлений Рп и Рст . В нестационарном режиме давление возмущения или изменение Рст в ПВД заполняет объем корпуса измерителя скорости и поступает в объем чувствительного элемента, переменную пневматическую емкость 2 и преобразователь 4. Сигнал с преобразователя проходит через усилитель 5, включает двигатель 6 и через редуктор 7 воздействует на емкость 2 в соответствии с законом (5.17). Это означает, что в процессе полета автоматически выполняется условие инвариантности (5.12).

Рис. 5.7. Инвариантный измеритель воздушной приборной скорости самолета

На малых высотах полета ЛА расхождение постоянных времени в каналах Рст и Рп сравнительно невелико (см. рис. 5.3). Поэтому, например, для вертолетного измерителя скорости закон (5.17) можно выполнить только для одного значения отношения Рп/Рст [а.с. 908150 (СССР)]. Это значительно упрощает конструкцию измерителя скорости, но не позволяет достичь абсолютной инвариантности на всех режимах полета. Но даже при использовании упрощенного варианта измерителя скорости на вертолете помехи от аэродинамических возмущений снижаются на целый порядок. Для высокоманевренных самолетов такое упрощение недопустимо.

С учетом полученных алгоритмов, в цифровых измерителях можно компенсировать дополнительную погрешность (а также и динамическую погрешность по каналу Рп) путем введения их в алгоритмы формирования сигналов. При этом необходимо иметь в виду, что механические индикаторы скоростных параметров останутся нескомпенсированными.

Рис. 5.8. Регулируемая пневматическая емкость:

1 – штуцеры; 2 – герметичный корпус; 3 – вкладыши съемные; 4 – кожух; 5 – сильфон; 6 – винт; 7 – шкала

Для достижения условия инвариантности измерителя в ограниченном диапазоне измерения высоты и скоростей можно воспользоваться устройством с регулируемой пневматической емкостью, величина которой регулируется вручную в процессе полета (рис. 5.8). В качестве регулируемой емкости применен сильфон 5 и съемные вкладыши 3, которые заполняют избыточный объем для конкретной пневмосистемы. С помощью штуцеров 1 устройство подсоединяется к пневмосистеме согласно рис. 5.7. Вращая кожух 4 относительно корпуса 2, сводят колебания стрелки указателя 3 (рис. 5.7) к минимуму. По шкале 7 фиксируют величину объема емкости, необходимую для данного режима полета.

5.2. Всенаправленный измеритель малой скорости с приемником давления на вращающейся штанге

Рассмотренный в параграфе 5.1 инвариантный измеритель скорости позволяет существенно повысить вероятность получения достоверной информации о малой скорости полета вертолета и самолета. Этот измеритель был быстро внедрен практически на всех современных вертолетах и на некоторых самолетах. Особенно быстро и просто был внедрен его упрощенный вариант с фиксированной дополнительной емкостью. С помощью устройства, показанного на рис. 5.8, на ответственном режиме полета определяют величину объема, изготавливают емкость с постоянным объемом и устанавливают ее в канал полного давления.

К недостаткам инвариантного измерителя скорости относится то, что с помощью него не решается проблема точного измерения околонулевых скоростей вертолета в направлениях полета вправо, влево, назад. Для этих целей используют всенаправленный измеритель малой скорости (рис. 5.9).

Рис. 5.9. Принципиальная схема датчика всенаправленного измерителя скорости с приемником давления на вращающейся штанге: 1 – преобразователь давления в электрический сигнал; 2 – штанга; 3 ‑ приемник давления

Принцип действия всенаправленного измерителя основан на способности приемников давления, установленных на вращающейся штанге, разлагать общую скорость полета по направлениям вперед-назад (ось xx) и вправо-влево (ось zz). При нулевой скорости полета штанга 2 с приемником 3 совершает принудительное с помощью двигателя постоянное вращение вокруг своей оси. При этом в дифференциальный датчик 1 поступают одинаковые по величине давления Р1 и Р3. Сигнал с датчика отсутствует, что свидетельствует об отсутствии движения вертолета. При появлении движения вертолета приемники 3 участвуют в двух движениях: вращательном и поступательном (рис. 5.10).

Рис. 5.10. Схема расположения приемников давления при вращении штанги (а) и векторная диаграмма скоростей (б)

Рассмотрим вариант, когда на штанге установлены приемники полного давления типа ППД. Если вертолет летит со скоростью и скольжением β, то составляющие этой скорости равны

, (5.18)

. (5.19)

Окружная скорость при вращении штанги равна

, (5.20)

где f – частота вращения штанги; R – радиус штанги. При вращении приемники давления занимают положения 1 – 4 (рис. 5.10, а). В зависимости от этого поступательная и окружная скорости либо складываются (в положениях 1 – 2), либо вычитаются (в положениях 3 – 4). Определим значения полных давлений в точках 1 – 4 по формуле

. (5.21)

Подставляя значения скоростей в эту формулу в каждой точке ППД, получим

, (5.22)

, (5.23)

, (5.24)

. (5.25)

Как известно, поступательная скорость относительно воздуха зависит от динамического давления Рп-Рст :

, (5.26)

, (5.27)

, (5.28)

. (5.29)

Определим приращения динамического давления ΔРд по осям х-х, z-z. Для этого из уравнения (5.26) вычтем уравнение (5.28), а из уравнения (5.27) вычтем уравнение (5.29):

, (5.30)

. (5.31)

В формулы (5.30) и (5.31) подставим значения скоростей vo, vx, vz по формулам (5.18) – (5.20):

, (5.32)

. (5.33)

По формулам (5.32) и (5.33) в вычислителе всенаправленного измерителя определяются значения приборной скорости полета вертолета в направлениях вперед-назад, вправо-влево при и постоянных значениях параметров f, R.

Для оценки эффекта всенаправленного измерителя малых скоростей по последним формулам определим чувствительности динамического давления по скорости

, (5.34)

. (5.35)

Видим, что чувствительность давлений по скорости в рассматриваемом измерителе постоянна и не зависит от скорости полета в отличие от манометрического способа измерения (рис. 5.11).

Рис. 5.11. Зависимость чувствительности давления по скорости:

1 – для всенаправленного измерителя;

2 – для манометрического способа

Следует особое внимание обратить на формулы (5.30) – (5.33). Оказывается, что малые скорости измеряются вместе с наперед заданной скоростью vo. Это равносильно наличию искусственного наддува в пневматической системе восприятия полного давления, который может быть увеличен за счет увеличения радиуса R и частоты вращения штанги f. Предельным значением окружной скорости vo является скорость, при которой в приемнике давления появляются сверхзвуковые течения воздуха, что приводит к запиранию приемника (волновой кризис).

Для определения направления полета ось штанги датчика измерителя фиксируется относительно строительной оси вертолета, как это показано на рис. 5.10. Дифференциальный датчик давления 1 (рис. 5.9) непрерывно принимает разность давлений с двух приемников давления. Однако прием этой разницы давлений в вычислителе осуществляется только тогда, когда ось приемника совпадает с осями х-х и z-z вертолета по сигналу с диска, вращающемуся вместе со штангой.

Знаки давления дифференциального датчика, рассчитанные по формулам (5.30) и (5.31), будут зависеть от направления движения вертолета (рис. 5.12), полная истинная воздушная скорость вычисляется по ее составляющим как

.

Рис. 5.12. Знаки давления дифференциального датчика в зависимости от направления полета

Знаки давления дифференциального датчика могут быть алгоритмом определения направления движения вертолета.

Представителем всенаправленного измерителя по приведенной выше теории является измеритель фирмы Пейсер Системс (США) с условным названием ЛОРАС. Она состоит из датчика (рис. 5.13), указателя малых скоростей (рис. 5.14) и вычислителя воздушных параметров (не показан), в котором расположен датчик статического давления. На основе давления Рд , получаемого с приемников на штанге, Рст с датчика, расположенного внутри вычислителя и температуры торможения потока воздуха вычисляются следующие параметры: полная истинная воздушная скорость, продольная составляющая истинной воздушной скорости, поперечная составляющая истинной скорости, давление окружающего воздуха, температура наружного воздуха. Масса датчика 2,3 кг, масса вычислителя 5,8 кг, диаметр корпуса датчика 108 мм, радиус штанги датчика 0,34 м, скорость вращения штанги 720 об/мин.

Рис. 5.13. Внешний вид всенаправленного датчика давления:

1 – приемник Вентури; 2 – штан­га; 3 – дифференциальный преобразователь давления в электрический сигнал; 4 – приемник температуры торможения потока; 5 – корпус с двигателем

Измеритель имеет следующие технические данные: диапазон полной скорости 0 – 370 км/ч, диапазон продольной составляющей скорости от –2,5 км/ч до +370 км/ч, диапазон поперечной скорости 92,5 км/ч вправо, 92,5 км/ч влево, диапазон температуры наружного воздуха от –54оС до +55оС.

Рис. 5.14. Внешний вид указателя измерителя ЛОРАС:

1 ‑ шкала всенаправленной скорости; 2 ‑ граница допустимой скорости; 3 ‑ шкала продольной скорости; 4 ‑ планка поперечной скорости; 5 ‑ шкала поперечной скорости;

­‑ планка продольной скорости; 7 ‑ центр околонулевых скоростей

В измерителе предусмотрено применение различных указателей, вплоть до многофункционального, получающего информацию как от датчиков на штанге, так и от ПВД, установленного на борту фюзеляжа. Например, указатель, показанный на рис. 5.14, имеет ограниченные диапазоны: полная скорость от 0 до 222 км/ч; продольная составляющая скорости от –74 до +111 км/ч; поперечная составляющая скорости ±92,5 км/ч.

Шкалы имеют градуировку в узлах (миля/час). Полная скорость отображается по левой шкале 1, продольная скорость – по вертикальной шкале 3, поперечная скорость – по горизонтальной шкале 5. Полную скорость показывает стрелка по шкале 1, продольную скорость показывает планка 6, поперечную скорость показывает планка 4. Предельное значение скорости определяется перекрестием планок 4 и 6 на границе 2.

По сравнению с традиционным манометрическим измерителем скорости измеритель типа ЛОРАС имеет очевидные преимущества: он может измерять в горизонтальной плоскости все скорости. Он обладает высокой чувствительностью согласно формулам (5.34) и (5.35). При указанных выше технических значениях и при нормальной плотности (ρ = ρо) чувствительность измерителя по продольной оси, например, составляет 0,703·10-3 кг/см2 на один км/ч при скорости полета 1,874 км/ч. При такой же скорости обычный манометрический измеритель имеет чувствительность 0,166·10-5 кг/см2 на один км/ч, то есть в 423,5 раза меньше.

К положительным свойствам измерителя типа ЛОРАС относятся: способность измерять скорость по двум осям, высокая точность (± 3,7 км/ч), удовлетворительная динамика сигналов в связи с их передачей по электрическим каналам (вместо пневматических).

5.3. Всенаправленный измеритель малой скорости с приемником давления на лопасти

По назначению всенаправленный измеритель малой скорости с приемником давления на лопасти аналогичен измерителю типа ЛОРАС. Принципиальным его отличием является то, что он является полностью механическим, начиная от приемника давления на лопасти и кончая указателем (рис. 5.15).

В качестве приемника давления применен специальный малогабаритный приемник ППД-7В (рис. 5.16), установленный на лопасти НВ.

Для аэродинамической компенсации скоса потока в приемнике ППД-7В предусмотрен выступ 1. Полное давление от ППД-7В по пневмопроводу 2, проложенному внутри одной из лопастей 3, подается в устройство распределительное пневматическое УРП, которое разлагает его на составляющие по осям xx и zz вертолета. УРП содержит в себе корпус, ротор 24, через ось которого в корпус поступает давление Рп , четыре пневмоклапана 21, 23, 25, 26 (рис. 5.20). Ротор 24 вращается вместе с лопастью, открывая по очереди клапаны с помощью своего выступа 22. Так как УРП жестко ориентирован по осям вертолета xx и zz, то разности давлений Рп1 - Рп3 и Рп2 - Рп4 пропорциональны скорости полета в направлении тех же осей.

Рис. 5.15. Внешний вид комплекта измерителя КВИС: 1 – устройство распределительное пневматическое УРП; 2 – приемник полного давления ППД-7В; 3 – указатель скорости вертолетный УСВ

Рис. 5.16. Приемник ППД-7В на лопасти вертолета:

1 – аэродинамический компенсатор; 2 – пневмопровод; 3 – лопасть

Указатель УСВ в единой конструкции содержит три указателя: указатель положительной продольной скорости в диапазоне свыше 70 км/ч, основанный на традиционном манометрическом методе; указатель малой вертолетной продольной скорости в диапазоне от плюс 70 км/ч до минус 70 км/ч (вперед – назад) и указатель малой вертолетной поперечной скорости в диапазоне от плюс 70 км/ч до минус 70 км/ч (вправо – влево).

Знак направления полета вертолета определяется с помощью оригинальной конструкции дифференциальных чувствительных элементов указателей малых скоростей (рис. 5.17).

Рис. 5.17. Принципиальная схема указателя продольной малой вертолетной скорости:

1, 2 – манометрические коробки; 3 – тяга;

4 – кривошип; 5 – подвижный центр;

6 – стрелка; 7 – шкала; 8 – скоба;

9, 11 –  пневмопроводы; 10 – жесткая перегородка

Указатель малой скорости состоит из двух манометрических коробок 1 и 2, соединенных между собой жесткой перегородкой 10, к которой припаяна скоба 8 с подвижным центром 5. При движении вертолета без скольжения Рп2 - Рп4 = 0, давления в коробках 1 и 2 равны между собой. Это значит, что перегородка 10 уравновешена, центр 5 скобы 8 занимает начальное положение, а стрелка указывает нулевую скорость. При движении вертолета вправо Рп2 - Рп4 = ΔРп , перегородка 10 со скобой 8 переместится вниз, потянет за собой тягу 3, которая повернет стрелку 6 через кривошип 4 по шкале 7 в сторону надписи "вправо". Подробнее принцип действия КВИС поясняется рисунками 5.18, 5.19 и 5.20.

Рис. 5.18. Структурная схема измерителя КВИС

Видно, что для измерения скорости имеется два канала – канал восприятия давлений Рп и Рст от бортового ПВД-6М (манометрический метод) и канал восприятия полного давления Рп от приемника ППД-7В на лопасти (метод наддува). Давление Рп , поступающее в УРП, разделяется в нем на две составляющие: ΔРпх и ΔРпz. В указателе УСВ имеется решающее устройство РУ2 по каналу малых скоростей ΔРх с чувствительным элементом ЧЭ2. В диапазоне малых скоростей ± 70 км/ч выход с РУ2 подается через устройство выбора сигнала УВС на стрелку 1 продольной скорости. На эту же стрелку 1 по каналу от приемника ПВД-6М через чувствительный элемент ЧЭ1; решающее устройство РУ1; устройство выбора скорости УВС подается сигнал скорости vх, которая решается в указателе манометрическим методом.

Рис. 5.19. График изменения избыточного давления в зависимости от скорости полета в измерителе КВИС: а – в канале малых скоростей; б – в манометрическом канале

Устройство выбора УВС до некоторого значения скорости (± 70 км/ч) пропускает только сигнал малых скоростей через РУ2 . При скорости vх > 70 км/ч УВС пропускает сигналы только от ПВД-6М.

Канал малой поперечной скорости управляет стрелкой 2 по сигналу ΔРпzот УРП и работает так, как показано на рис. 5.17.

На участке А10АБ характеристика рассчитана по "вертолетным" формулам, а на участке БВ она рассчитана по формуле манометрического метода. В целом в КВИС используется весь график на участке А10АБВ. На участке графика в пределах ± 70 км/ч нелинейностью можно пренебречь. При больших скоростях растет нелинейность и неоднозначность характеристики из-за непостоянства плотности на различных высотах полета.

По графику видна существенная разница чувствительностей двух методов измерения скорости. Так, на скорости 70 км/ч по методу измерения малых скоростей давление Рдх = 58,477 мм рт. ст., тогда как по манометрическому методу оно равно только 1,75 мм рт.ст., то есть отличаются в 33,4 раза. Еще большая разница будет в околонулевом диапазоне скоростей. На скорости 10 км/ч первое давление равно 10,298 мм рт. ст., а второе только 0,04 мм рт. ст. Отличаются они уже в 257,5 раз.

В таблице 5.1 приведена тарировочная характеристика КВИС в диапазоне малых скоростей.

Таблица 5.1

± vx , ± vz ,км/ч

0

10

20

30

40

50

60

70

80

Рдх , Рдz,мм рт. ст.

0

10,298

20,596

30,158

38,617

46,341

53,328

58,477

63,628

Измеритель типа КВИС имеет те же преимущества и те же недостатки, что и измеритель типа ЛОРАС. Дополнительным недостатком является большое время переходного процесса сигнала от ПВД-7В до указателя из-за наличия пневмопроводов большой длины.

Измеритель типа КВИС работает следующим образом (рис. 5.20).

Полное (Рп) и статическое (Рст) давления набегающего потока, воспринимаемые бортовым ПВД-6М, подаются в коробки манометрические 20, 29 и корпус указателя соответственно. Под действием разности (Рп - Рст) полного и статического давлений, пропорциональной приборной скорости vпр , происходит перемещение верхних центров коробок манометрических 20 и 29. Данные перемещения через суммирующий передаточно-множи­тельный механизм вызывают вращение стрелки 37.

Работа канала продольной составляющей воздушной скорости vх происходит следующим образом. Давления Рп3 и Рп1 , воспринимаемые ППД-7В в моменты времени t3 и t1, поступают через клапанные механизмы 26 и 23 пневмораспределителя соответственно в нижнюю и верхнюю полости д.ч.э. 31. Разность давлений Рп1 - Рп2 = ΔРх-х вызывает перемещение центра д.ч.э. 31 "вверх" (при полете вперед) или "вниз" (при полете назад). Перемещение центра д.ч.э. 31 через тягу 13 передается кривошипу 12, который поворачивает ось 6 с закрепленным на ней сектором 8. Сектор 8 через трибку 9 передает вращение на стрелку 37 продольной составляющей скорости. При полете вперед стрелка 37 индицирует положительную скорость (правое вращение), при полете назад – отрицательную скорость (левое вращение).

Одновременно с перемещением центра д.ч.э. 31 перемещаются центры манометрических коробок 20 и 29 под действием давления, воспринимаемого от бортового ПВД. Перемещения центров манометрических коробок 20 и 29 через рычажный суммирующий механизм 28, 30, 17 передаются кривошипу 18, который поворачивается вместе с осью 16. При полете с приборной скоростью vnp, меньшей 70 км/ч, поворот оси 16 не вызывает поворота оси 6,. т.к. между поводками 15 и 14 имеется предварительный зазор Δ. При достижении вертолетом скорости vnp = 70 км/ч зазор становится равным нулю, поводок 14 приводит в движение поводок 15 и верхний центр д.ч.э. 31 доходит до упора 32. Одновременно верхний центр манометрической коробки 29 доходит до упора 27 и манометрические коробки отключаются. Начиная со скорости vnp = 70 км/ч, указатель работает от бортового ПВД, а индикация приборной скорости осуществляется с помощью той же стрелки 37, что и индикация продольной составляющей скорости vх . Стрелка 37 продолжает движение только от манометрической коробки 20. Через поводковую пару 14, 15 ее движение передается оси 16 и далее оси 6 с сектором 8, вращающим трибку 9 со стрелкой 37. Работа канала поперечной составляющей воздушной скорости vz аналогична работе канала продольной составляющей воздушной скорости vх. Давления Рп2 и Рп4 через клапанные механизмы 25 и 21 поступают соответственно в верхнюю и нижнюю полости д.ч.э. 33.

Разность давлений Рп2 - Рп4 = ΔРz-z вызывает перемещение центра д.ч.э. 33 "вверх" (при полете вправо) или "вниз" (при полете влево).

Перемещение верхнего центра д.ч.э. 33 через тягу 34 передается кривошипу 11, который поворачивает ось 10 с закрепленным на ней сектором 7. Сектор 7 через трибку 5 передает вращение на стрелку 36 поперечной составляющей скорости vz. Отсчет показаний поперечной составляющей скорости vz производится по внутреннему участку шкалы циферблата 3.

5.4. Всенаправленный измеритель малой скорости с приемником давления на двухстепенном подвесе

Измеритель малой скорости с приемником давления на двухстепенном подвесе, как и измерители ЛОРАС и КВИС, использует эффект наддува в измерительной пневматической системе полного давления. В измерителях ЛОРАС и КВИС наддув достигается за счет окружной скорости приемника давления при его вращении на штанге или на лопасти.

Измеритель малой скорости с приемником давления ПВД на двухстепенном подвесе был впервые разработан в начале семидесятых годов английской фирмой Маркони Авионикс (Marconi Avionics) и получил условное название ЛЭССИ (LASSIE) (рис. 5.21).

Рис. 5.21. Внешний вид измерителя ЛЭССИ:

1 – индикатор;
2 – вычислитель;
3 ‑ датчик

Измеритель ЛЭССИ состоит из индикатора 1, вычислителя 2, датчика 3. Для получения наддува в пневмосистеме Рп датчик 3 измерителя размещается на фюзеляже вертолета под НВ. В процессе вращения НВ скорость отбрасывания потока воспринимается ПВД 1, пропорциональное ей полное давление передается по тракту 7 в вычислитель (рис. 5.22).

Как было показано во второй главе, величина наддува зависит от интенсивности вихря от НВ и составляет 50 – 130 км/ч (таблица 2.5). Это уже достаточно большие скорости, которые можно легко преобразовать в электрические сигналы для обработки их в вычислителе.

Измеритель ЛЭССИ способен воспринимать и вычислять параметры Рп , Рст , Рд , Тт, угол атаки местный αм , угол скольжения βм, скорости по продольной оси ± vх , по попереч ной оси ± vz. Основу системы составляет ее датчик первичных аэродинамических параметров (рис. 5.22). Он представляет собой комбинированное устройство, совмещающее в себе ПВД и флюгер, закрепленные на общей штанге, свободно вращающейся на двухстепенном подвесе 2 относительно осей Х – Х и Z –Z.

Рис. 5.22. Принципиальная схема датчика измерителя ЛЭССИ: 1 – ПВД; 2 – подвес двухстепенной; 3 – датчик угла β; 4 – флюгер; 5 – датчик угла α, 6 – корпус

ПВД и флюгер сами по себе в отдельности не являются оригинальными. Оригинальным является их сочетание вместе с подвесом. В качестве выходных устройств по угловым координатам применены БСКТ. Давления с ПВД (Рп, Рст) передаются на выход устройства через подвижный шарнир с помощью гибких шлангов. Датчик устанавливается на вертолете под несущим винтом и обдувается местным воздушным потоком, который представляет собой сумму потоков от несущего винта и от скорости движения вертолета относительно воздуха. В режиме висения при отсутствии ветра ось Y – Y датчика совпадает с вертикальной осью вертолета Y – Y. Во всех остальных случаях ось Y – Y датчика совпадает по направлению с суммарным вектором воздушного потока (рис. 5.24).

На рис. 5.23 представлена векторная диаграмма воздушных потоков в месте установки датчика ЛЭССИ при полете вертолета по оси X – X без скольжения. В режиме висения весь поток НВ направлен по вектору АД. Плоскость НВ перпендикулярна вектору АД. При движении плоскость НВ наклоняется в сторону предполагаемого движения.

Появляется угол наклона плоскости НВ φ. Вектор потока АД занимает положение АС. По направлению движения вертолета появляется поток ДС – проекция вектора АС на ось X – X. Одновременно, под действием тяги винта, расположенного под углом φ, появляется вектор воздушного потока СВ. Этот вектор пропорционален воздушной скорости. В результате действия потока от НВ и от скорости полета результирующий вектор занимает положение АВ. Как показано на рисунке, датчик отслеживает положение суммарного потока АВ.

По аналогии с самолетом будем обозначать аэродинамические углы через α и β. Под углом α будем понимать аэродинамический угол между проекцией вектора суммарного потока АВ на плоскость ZOX (вектор ДВ) и вектором суммарного потока АВ. Под углом β будем понимать аэродинамический угол между вектором скорости по оси Х - Х (вектор ДВ) и проекцией вектора суммарного потока на плоскость ZOX (вектор ДВ2 , риc. 5.24).

Рис. 5.23. Векторная диаграмма воздушных потоков в месте установки датчика ЛЭССИ при полете вертолета в направлении оси Х – Х без скольжения (β = 0)

Из приведенных определений следует, что полной аналогии аэродинамических углов на вертолете, определяемых с помощью всенаправленного датчика, и на самолете, нет. Тем не менее, это уже аэродинамические углы, однозначно связанные с суммарным аэродинамическим вектором, который на вертолете определяет и несущую и движущую силы. С привлечением дополнительной информации (угол автомата перекоса и др.) можно определить значения аэродинамических углов относительно фюзеляж вертолета. Эти зависимости определяются при трубных продувках и летных испытаниях конкретного вертолета.

В соответствии с векторной диаграммой рис.5.23 для полета без скольжения определим алгоритмы скорости по давлению, воспринимаемому ПВД. Напишем систему уравнений

DВ = DС + СВ

АD = АВ·sin α

DС = АD·tg φ = АВ·sin α·tg φ (5.36)

DВ = АВ·cos α

Решая совместно уравнения системы (5.36) получим:

СВ=DB–DC=AВ·cosα-AB·sinα·tgφ=AB(cos α - sin α·tg φ). (5.37)

Так как вектop СВ пропорционален величине скоростного напора по траектории полета Х - Х: СВ ≡ 0,5 ρ, то скорость равна в околонулевом диапазоне

. (5.38)

На рис. 5.24 представлена векторная диаграмма потоков в месте установки всенаправленного датчика аэродинамических параметров при полете вертолета со скольжением (общий случай полета).

Используя известные тригонометрические зависимости, получим систему уравнений для определения вектора СВ:

СВ = DB – DC;

DC = AD·tg φ;

AD = AB2·sin α; (5.39)

DB = DB2·cos β;

DB2 = AB2 cos α.

Решая совместно уравнения системы (5.39) получим формулу для определения скоростного напора, пропорционального скорости полета по оси Х-Х.:

СВ = DB2·cosβ – AD · tgφ= AB2 · cosα· cosβ- AB2 · sinα· tgφ=

= AB2 (cosα· cosβ– sinα· tg φ) (5.40)

Из общей формулы (5.40) получается частный случай при полете без скольжения, когда β = 0.

Для определения вектора, пропорционального скоростному напору при движении вертолета по оси Z-Z напишем систему уравнений:

C1B3 = DB3 – DC1;

DC1 = AD · tgφ1;

AD = AD2·sin α; (5.41)

DB3 = DB2 · sinβ;

DB2 = AB2 · cos α.

Решая совместно уравнения системы (5.41) получим окончательную формулу для скоростного напора при полете по оси Z-Z:

C1B3 = DB2 · sinβ– AD · tgφ1 = AB2 · cosα· sin β - AB2 · sinα· tg φ1 =

= AB2(cosα· sin β - sin α· tg φ1). (5.42)

Рис. 5.24. Векторная диаграмма воздушных потоков в месте установки датчика ЛЭССИ при полете вертолета со скольжением

С учетом того, что CB = 0,5 ρ, C1B3 = 0,5 ρ, AB2 = Рд, получим формулы для определения скоростей по осям Х-Х и Z-Z:

, (5.43)

, (5.44)

где Pд – динамическое давление от суммарного потока НВ вертолета и скорости полета.

Принципиальной особенностью датчика системы ЛЭССИ является наиболее благоприятные условия для измерения давлений Рп, Рст. Кроме того, этот датчик способен измерять аэродинамические углы.

Недостатком датчика является ограниченная возможность по измерению малой, околонулевой скорости вертолета. Ограничение наступает из-за наличия трения в шарнире. Судя по некоторым зарубежным сведениям начальная скорость измерения составляет около 20 – 30 км/ч.

Как показали результаты теоретических исследований в облегченном варианте датчика (без обогрева) с точностью до 1о по углам α и β можно достичь начальной скорости 15 – 20 км/ч. Кроме углов застоя датчика величина измеряемой минимальной скорости в системе аэродинамических параметров с датчиком типа ЛЭССИ определяется динамической погрешностью и порогом чувствительности по давлению (статической погрешностью) решающих устройств.

Специалисты ОАО УКБП существенно улучшили схему датчика измерителя ЛЭССИ за счет замены трубопроводов по каналам Рп и Рст на специальную конструкцию воздухопроводов с магнитно-жидкостной герметизацией и за счет оптимизации флюгера с целью увеличения его момента. Эти технические решения позволили разработать датчик вертолетной скорости ДВС с улучшенными характеристиками (рис. 5.25).

Рис. 5.25. Внешний вид датчика ДВС

В одном из вариантов ДВС были реально получены следующие технические характеристики:

- масса 1,6 кг;

- диапазон скоростей от 20 до 400 км/ч;

- диапазон по углу атаки α = ± 180°;

- диапазон по углу скольжения β = ± 70°;

- погрешность восприятия Рд ± 0,02q;

- погрешность восприятия Рст ± 0,02q;

- погрешность измерения угла атаки от 0,5 до 2 градусов;

- погрешность измерения угла скольжения от 0,5 до 2 градусов.

Оригинальность рассмотренных измерителей малых скоростей сказывается на месте их установки на вертолете (рис. 5.26).

Рис. 5.26. Установка измерителей КВИС, ЛОРАС, ЛЭССИ на вертолете и их диапазоны измерения скоростей

Рис. 5.20. Принципиальная схема измерителя КВИС

Рис. 4.2. Схема воздушных сигналов:

1 – указатель давления;

6, 7, 8, 21, 22, 23 – ПСД;

12 – воздушная турбина;

2, 17 – СВС;

9 – приемник температуры;

15 – указатель vпр , резервный;

3, 4, 18, 19 – ППД;

10 – датчик Рд ;

16 – указатель Н резервный;

5, 20 – ДАУ;

11, 13 – переключатель скоро;

24 – фюзеляж

Таблица 3.1

Основные технические данные приемников типа ПВД и ППД

Шифр приемника

Наименование характеристик и параметров

Приемник нормально работает при углах

Интервал рабочей температуры и время работы при предельной температуре

Допустимая негерметичность камер (трубопроводов)

Расход воздуха

Потребляемый обогревателем ток при питании от источника напряжения 27 В

Вибрационные нагрузки

Линейные центробежные нагрузки

Ударные нагрузки

Вес не более

через дренажное отверстие камеры полного давления

через трубопроводы статического и полного давления

Частота до

перегрузка до

амплитуда смещения до

число ударов

перегрузка

статического давления

полного давления

атаки до

скольжения до

при давлении в камере

допуск на спад за 3 мин

при давлении в камере

допуск на спад за 3 мин

при избыточном давлении

расход

при избыточном давлении

расход не менее

оС

мм рт. ст.

л/мин

мм рт.
ст.

л/мин

А

Гц

мм

тыс.

г

ПВД-М1

-

-

± 60+800 – 2 мин

370

5

760

5

100

2 – 15

100

8

-

-

-

-

-

-

-

500

ПВД-Т1

-

-

± 60

370

2 за
2 мин

760

5

100

2 – 15

100

15

-

-

-

-

-

-

-

5800

ПВД-3Д

± 30

± 30

+ 60
+1700 – 3 мин

370

1 за
2 мин

760

1 за
5 мин

100

5 – 15

100

15

-

-

-

-

-

-

-

1700

ПВД-5

0

0

± 60

370

5

760

5

100

2 – 15

100

10

5,5–6,5

300

-

-

10

10

12

800

ПВД-6М

0

0

± 60

50

0,4

50

0,4

-

-

75

15

3,4–3,9

300

-

-

6

10

12

250

ПВД-7

0

0

± 60
+90 – 1 час

370

5

760

5

100

2 – 15

100

10

5,5–6,5

300

-

-

10

10

12

1200

ПВД-9

-5 – +15

0

+ 370 – -60
+ 500 – 1 мин

370

5

760

5

100

2 – 15

100

10

-

35 – 80

6

-

25

-

-

650

ПВД-9М

-5 – +15

± 5

± 60
+ 800 – 1 мин

370

5

760

5

100

2 – 15

100

10

-

2000

10

-

25

-

-

620

ПВД-12

± 25

± 25

± 60
+ 800 – 3 мин

370

5

760

5

100

5 – 15

100

15

-

2000

10

-

25

-

-

1700

ПВД-12А

± 25

± 25

± 60
+ 800 – 3 мин

370

5

760

5

100

5 – 15

100

19

-

2000

0

-

25

-

-

1000

ПВД-15

± 25

± 25

+ 60 – - 60
+ 700 – 38 сек

56 (разреж.)

0

6560

0

100

5 – 15

100

15

-

300

4

-

25

-

-

950

ПВД-15А

± 25

± 25

+ 60 – - 60
+ 700 – 3 мин

370

5

760

5

100

5 – 15

100

15

-

1000

10

-

25

-

-

1350

ПВД-16

± 10

± 10

± 60
+ 300 – 3 час
+ 450 – 10 мин

370

0

760

0

100

5 – 15

100

25

6 – 7,4

30 – 200

4,5

-

10

10

12

1200

Окончание табл.3.1

ПВД-17А
ПВД-17Б

± 25

± 25

± 60
+ 800 – 1,5 мин

370

5

760

5

100

2 – 15

100

10

-

2000

15

1

25

-

-

800

ПВД-18

-5 – +20

± 10

± 60
+ 90 – 3 часа

370

5

760

5

100

2 – 15

100

10

5,5 – 6,5

300

5

0,7

10

10

12

1200

ПВД-19А
ПВД-19Б

-10 – +30

± 10

± 60
+ 200 – 3 часа

370

0

760

0

100

2 – 15

100

10

13 – 17

300

5

0,7

4

10

12

3500

ПВД-19-1

-10 – +30

± 10

± 60
+ 200 – 3 часа

370

0

760

0

100

2 – 15

100

10

5,7 – 7,2
115 В

300

5

0,7

4

10

12

3000

ППД1

-5 – +10

± 5

± 60
+ 300 – 7,5 часа
+ 500 – 10 мин

-

-

760

5

100

2 – 15

100

10

6,2 – 6,8

300

-

-

30

10

12

1000

ППД2

-

-

± 60

-

-

760

5

100

1,5 – 5

100

14

5,5 – 6,5

200

3,5

0,5

-

10

4

300

Таблица 3.2

Технические характеристики ПВД фирмы Rosemount, США

Типы ПВД

850А

851А1

851А2

852А

851

855А1

856А1, 2, 3

858А

857С

857Д

857Е

Воспринимаемые параметры

Рп , Рст

Рп , Рст , α

Рп , Рст

Рп , Рст , α, β

Рп , Рст , α

Соответствие стандартам

MIL-P-25757B

Ts 0-C16
As-390

MIL-25632B

Ts 0-C16
As-390

MIL-P-83207A

Нет данных

MIL-P-83206
MIL-P-26292

Электропитание обогревательного элемента

Нет данных

28 В или 115 В

115 В

28 В или 115 В

28 В или 115 В

Нет данных

115 В

Нет данных

Диапазон рабочих температур

Нет данных

- 65о … + 350оС

Диапазон измерения α

-

-

-

-

до 50о

-

-

-

± 60о

- 5о… +30о

± 60о

На каких объектах устанавливается

военные

гражданские

военные

Гражданские

военные

F-16, Shuttle и др.

Нет данных

F-16

Место установки на объекте

Нет данных

На штанге, консоли крыла или фюзеляже

Нет данных

На штанге, консоли крыла

На фюзеляже

На штанге

На штанге или боковых сторонах фюзеляжа

Страна

Россия

Англия

Италия

ФРГ

Фирма

Восход

УКБП

Elliot

Aeritalia

Kollsman
System-Technik

Наименование,
шифр

КУС-1200

КУС-730/1100

КУС-620/900

81-27-01

серия "ГАРДА"

Е07241-10-003

Вид индикации

Диапазон работы

vпр , км/ч

150 – 1200

50 – 730

80 – 620

77 – 481

vист , км/ч

400 – 1200

400 – 1100

300 – 900

185 – 1111

219 – 416

185 –832,5

vмакс , км/ч

350 – 620

Н, м

0 – 15000

0 – 15000

0 – 10000

нет данных

0 – 5000

до 10640

Погрешность в нормальных условиях

δvпр , км/ч

±10 (v = 150 – 400)
±15 (v = 500 – 1200)

±10 (v = 50 – 100)
±5 (v = 100 – 350)
±10 (v = 350 – 730)

±5 (v = 100)
±3,5 (v = 150 – 200)
±4 (v = 250)
±5 (v = 300 – 450)
±6 (v = 500 – 620)

Соответствует FAR (стандарту AS-418A) и НЛГ СССР

±4,8

δvист , км/ч

±15 (Н = 0)
±30 (Н = 4000 – 8000м)
±40 (Н = 12000м)
±60 (Н = 15000м)

±15 (Н = 0 – 4000м)
±25 (Н = 4000 – 8000м)
±30 (Н = 8000 – 12000м)
±80 (Н = 12000 – 15000м)

±15 (Н = 0 – 2000м)
±12 (Н = 2000 – 8000м)
±20 (Н = 8000 – 10000м)

±9,3
(дополнительная погрешность)

нет данных

нет данных

δvмакс , км/ч

±5 (v = 350 – 450)
±6 (v = 500 – 550)
±9 (v = 600 – 620)

Соответствует FAR (стандарту AS-418A)

Вес, г

500

950

800

570

330

1200

Габаритные размеры

82,5х82,5х116

85х85х146

85х85х170

82,5х82,5х87,5

82,5х82,5х84

80х80х130

Страна

Россия

Англия

Италия

ФРГ

Фирма

Восход

УКБП

Elliot

Aeritalia

Kollsman
System-Technik

Наименование,
шифр

КУС-1200

КУС-730/1100

КУС-620/900

81-27-01

серия "ГАРДА"

Е07241-10-003

Вид индикации

Диапазон работы

vпр , км/ч

150 – 1200

50 – 730

80 – 620

77 – 481

vист , км/ч

400 – 1200

400 – 1100

300 – 900

185 – 1111

219 – 416

185 –832,5

vмакс , км/ч

350 – 620

Н, м

0 – 15000

0 – 15000

0 – 10000

нет данных

0 – 5000

до 10640

Погрешность в нормальных условиях

δvпр , км/ч

±10 (v = 150 – 400)
±15 (v = 500 – 1200)

±10 (v = 50 – 100)
±5 (v = 100 – 350)
±10 (v = 350 – 730)

±5 (v = 100)
±3,5 (v = 150 – 200)
±4 (v = 250)
±5 (v = 300 – 450)
±6 (v = 500 – 620)

Соответствует FAR (стандарту AS-418A) и НЛГ СССР

±4,8

δvист , км/ч

±15 (Н = 0)
±30 (Н = 4000 – 8000м)
±40 (Н = 12000м)
±60 (Н = 15000м)

±15 (Н = 0 – 4000м)
±25 (Н = 4000 – 8000м)
±30 (Н = 8000 – 12000м)
±80 (Н = 12000 – 15000м)

±15 (Н = 0 – 2000м)
±12 (Н = 2000 – 8000м)
±20 (Н = 8000 – 10000м)

±9,3
(дополнительная погрешность)

нет данных

нет данных

δvмакс , км/ч

±5 (v = 350 – 450)
±6 (v = 500 – 550)
±9 (v = 600 – 620)

Соответствует FAR (стандарту AS-418A)

Вес, г

500

950

800

570

330

1200

Габаритные размеры

82,5х82,5х116

85х85х146

85х85х170

82,5х82,5х87,5

82,5х82,5х84

80х80х130

1

Смотреть полностью


Скачать документ

Похожие документы:

  1. ОГЛАВЛЕНИЕ Введение (2)

    Литература
    ОГЛАВЛЕНИЕВведение ..……………….…………………………………………………….….…3 Глава 1. Тактика ... аппаратуры танков и БМП, авиационных и артиллерийских приборов и боеприпа­сов. Кроме того, ... группировки войск четко функционирующей системы управления авиацией опе­ративного и, ...
  2. Оглавление введение 7 раздел 1 угроза биотерроризма в современном мире 8

    Исследование
    ... working mechanisms. ОГЛАВЛЕНИЕВВЕДЕНИЕ…………………………………………………………………………7 Раздел 1. ... 62 3.1. Проблемы системы биологической безопасности….……………..62 ... к цели: ракеты, авиационные бомбы и контейнеры, ... специальной техникой, приборами, аппаратурой, медицинским ...
  3. Введение Error Reference source not found (2)

    Документ
    ОглавлениеВведение Error: Reference ... видах экономической деятельности в информационных системах и ресурсах, едином государственном регистре ... - производство бортовых авиационныхприборов, систем воздушной навигации, приборов и аппаратуры для ...
  4. Реферат Подготовка и начало Второй Мировой войны (документы свидетельствуют) Оглавление Введение 3 I Причины Второй Мировой войны 5 II Виновники войны 10 II 1 Кто привёл Гитлера к власти 10 II 2 Вступление СССР в войну 13 II 3 Подготовленность

    Автореферат диссертации
    ... ) Оглавление: Введение ... приборами ... системы званий, две системы ... бомбардировочные дивизии. 3-й авиационный корпус – в ...
  5. Введение 6 глава 1 идея и этапы создания международной космической станции 9 1 1 идея создания мкс 9 1 2 история создания проекта мкс 10

    Документ
    ОглавлениеВведение 6 Глава 1. Идея ... радиолинии, системы телеметрического контроля и радиотехнической системы стыковки, приборы управления ... 5 Авиационно-космические системы. Москва, Издательство МАИ, 1997. 6 Авиационно-космические системы. Москва ...

Другие похожие документы..