textarchive.ru

Главная > Документ


Вертолет среди всех видов летательных аппаратов отличается своими оригинальными режимами полета:

Способностью взлетать и приземляться практически в любом месте, на необорудованной площадке, на крыше дома, на подвижное морское судно, на автомобиль и т.д.;

Висеть над определенной точкой Земли, меняя ее при выполнении работ на околонулевых скоростях;

Перемещаться во всех направлениях в пространстве – вверх-вниз, вперед-назад, вправо-влево, поворачиваться вокруг любой своей оси;

Совершать полет со снижением при отказе двигателей на режиме авторотации.

Эти свойства определяют области практического применения вертолета в различных целях народного хозяйства (строительство, опыление полей, перевозка грузов), в военных целях.

Эти же свойства определяют и особенности приборов и систем, обеспечивающих режимы полета вертолета [28 – 29].

Особенности пилотажно-навигационного оборудования обусловлены принципом создания подъемной силы, режимами полета и характером обтекания фюзеляжа воздушным потоком, в том числе потоком от несущего винта (НВ).

Подъемная и движущая сила на вертолете создается одним и тем же элементом конструкции – несущим винтом, омывающим в процессе работы весь фюзеляж (на малых скоростях в особенности). В связи с этим на вертолете практически отсутствуют места на фюзеляже с установившемся воздушным потоком, что резко осложняет восприятие давления Рп, Рст и температуры Тн.

В условиях возмущенного потока необходимо измерять скорости полета во всех направлениях, начиная с нуля; аэродинамический угол атаки, высоту полета, полное, статическое и динамическое давления, температуру наружного воздуха (Тн).

С учетом этих особенностей строятся все пилотажно-навигационные приборы и системы, измерительно-вычислительные комплексы типа СЭИ, КИСС, СВС, СПКР.

Рассмотрим, как же образуется полезная тяга вертолета.

Несущий винт состоит из нескольких (3, 6, 8) лопастей, вращающихся вокруг оси над фюзеляжем. Фюзеляж висит на винте. Каждая лопасть в отдельности представляет собой крыло. Ее подъемная сила образуется по известным законам аэродинамики, когда подъемная сила , где α – угол лопасти по отношению к вектору потока воздуха. Однако приближенно можно представить, что вместе все лопасти представляют собой вращающийся диск. В этом случае тяга несущего винта (НВ) определяется так:

, (2.42)

где Ст – коэффициент тяги; F – ометаемая площадь диска НВ; ρ – плотность воздуха; ω – угловая частота вращения НВ; R – радиус НВ; v – скорость перемещения конца лопасти, v = ωR.

Частота НВ практически постоянна, редукция от двигателя постоянна, т.е. ωR постоянна. Предельное критическое значение v = ωR ограничивается критическим значением числа М на оконечности лопасти:

, или ,

где а – скорость звука. За пределами vкр наступает волновой кризис, подъемная сила падает.

Практически м/с (220·3,6 ≤ ≈ 800 км/ч). При этом под скоростью подразумевается результирующая скорость vрез = ωR ± vполета. Скорость полета вертолета зависит от угла атаки лопасти и угла наклона диска несущего винта. В формуле (2.42) скрыта зависимость тяги от скорости полета вертолета, т.е. поступательного движения НВ относительно воздуха. Практически тяга НВ есть функция многих параметров:

, (2.43)

где χ – коэффициент использования площади НВ, ; vв – скорость вертолета, поступательная; v1 – скорость подсасывания; α – угол атаки лопасти; F – площадь НВ.

Для разных режимов полета вертолета тяга определяется так:

– для режима висения, (2.44)

– для косого движения, (2.45)

где v1 – скорость подсасывания или средняя индуктивная скорость в плоскости вращения НВ; vв – скорость вертолета.

В режиме висения тяга Т и вес G вертолета равны между собой, т.е. Т G, откуда имеем:

. (2.44)

Рис. 2.31. Образование тяги вертолета:

v1 – скорость подсасывания;

v2 – скорость отбрасывания;

v2 = 2v1

Винт конкретного типа вертолета имеет определенную удельную нагрузку на ометаемую площадь, которая определяется как р = G/F, кг/м2. Зная, что скорость отбрасывания v2 = 2v1, по формуле (2.46) можно определить ее минимальное значение на режиме висения, таблица 2.5:

Таблица 2.5

Тип вертолета

Ми-1

Ми-2

Ми-8

Ми-6

Тяжелый

Удельная нагрузка р, кг/м2

14,2

21,5

31,2

42,1

60

v2, м/с при Н = 0

15,6

19,0

23,0

27,0

32,2

v2, м/с при Н = 1000 м

16,4

20,0

24,0

28,2

33,8

v2, м/с при Н = 2000 м

17,2

20,8

25,2

29,6

35,4

Важно отметить, что минимальные скорости отбрасывания, приведенные в таблице 2.5 достаточно велики (от 51,12 до 127,4 км/ч), что дает уверенность в точном измерении отбрасываемого потока воздуха известными способами. Этот факт нам пригодится при исследовании специальных измерителей малых скоростей.

Характерным отличием лопасти НВ от крыла самолета является ее большое удлинение λ. Так, для Ми-8 λ = 20,47; для Ми-6 λ = 17,5; для Ка-32 λ = 16,56. Как уже было сказано выше, вертолеты могут быть как одноосные, так и двухосные. Для двухосного вертолета характерна его компактность, минимальные продольные габариты. В связи с этим момент инерции вертолета с двухосным винтом относительно вертикальной оси Jy-y в 1,5 – 2 раза меньше, чем у одноосного вертолета.

Спутник Земли

Как было сказано выше, космическое ракетоплавание основывается на теории ракетодинамики тел с переменной массой, когда справедлива формула скорости, обоснованная Э.К. Циолковским:

, (2.47)

где v – скорость ракеты; v1 – скорость истечения газов двигателя ракеты; m1 – масса ракеты; m2 – масса топлива ракеты.

Чтобы вывести спутник на круговую орбиту, ему нужно придать такую скорость движения по орбите, чтобы центробежное ускорение спутника уравновесилась притяжением его к Земле. Тогда спутник окажется в состоянии невесомости и будет двигаться по траектории, для которой выполняется условие равновесия [30]:

, (2.48)

где v – линейная скорость движения спутника по орбите, так называемая первая космическая скорость; Н – высота спутника над уровнем Земли; g – ускорение силы тяжести на этой высоте; R – радиус Земли. принимается, что ускорение силы тяжести обратно пропорционально квадрату расстояния от центра Земли:

, (2.49)

где g0 – ускорение у поверхности Земли, тогда:

, (2.50)

или . (2.51)

Если перейти к угловой скорости ω вращения спутника по круговой орбите, то:

. (2.52)

Период одного оборота:

. (2.53)

Положив в (2.51) Н=0, получим первую космическую скорость у поверхности Земли:

. (2.54)

Подставляя в (2.51) и (2.52) различные высоты Н, получим таблицу скоростей (таблица 2.6) движения спутников по круговым орбитам на различных высотах.

Таблица 2.6

Н, км

0

100

200

300

400

500

1000

10000

35870

v, км/с

7,91

7,84

7,78

7,72

7,66

7,61

7,34

4,76

3,06

ω, об/сутки

17,0

16,6

16,2

15,8

15,5

15,2

13,8

3,8

1

Из таблицы видно, что при Н = 35870 км спутник будет делать один оборот в сутки, т.е. он будет вращаться синхронно с Землей. Он будет "висеть" над определенной точкой Земли.

Чтобы спутнику покинуть Землю, он должен иметь скорость большую, чем первая космическая скорость:

, (2.55)

где Н – высота, с которой спутник уходит от Земли.

Если спутник стартует с поверхности Земли (Н = 0), то:

. (2.56)

Чем больше Н, тем скорость w меньше. В связи с этим спутник выгоднее запускать с тяжелых спутников Земли, которые вращаются вокруг Земли на расстоянии от нее Н.

Пока спутники запускаются только с космодромов, расположенных в определенных точках Земли и вращаются на орбите, наклоненной под определенным углом к плоскости экватора. Наши российские космодромы Байконур, Плесецк и Свободный слишком удалены от экватора. Поэтому наклонение орбит спутников были не менее 51 градуса.

Американские космодромы находятся ближе к экватору и ближе к океану, куда можно сбрасывать отработанные ступени аппаратов.

"Северность" наших космодромов вынуждает больше тратить топлива при выводе аппаратуры, так как меньше работает эффект вращения Земли. Это приводит к удорожанию запусков спутников. В связи с большими наклонениями орбит наших спутников южные широты Земли нами не могут контролироваться. Там полное господство американцев. Тут можно усмотреть коммерческий и военный аспекты вопроса. С этим Россия мириться не может и поэтому идет поиск выхода из этой ситуации.

Сейчас во всем мире идет борьба за обладание мотором будущего, гиперзвуковым прямоточным воздушно-реактивным двигателем – ГПВРД. Победитель приобретет мощное оружие и дешевое средство для вывода грузов на низкие орбиты. Конструктивно двигатель ГПВРД представляет собой открытую с двух сторон трубу с сужениями по сечению. С помощью вспомогательного "движка" он разгоняется до большой скорости и воздух в сужении сильно сжимается без всякой турбины. В нужном месте впрыскивается топливо и ГПВРД развивает фантастическую тягу, способную разгонять аппарат до скорости с М = 15 - 35, тогда как даже самые быстроходные ракеты достигают М = 6 – 7.

Аппарату с таким двигателем не нужно с собой возить окислитель (кислород) для горения топлива на малых высотах. Этим он отличается от аппарата с ЖРД.

Горючим в ГПВРД служит экологически чистое топливо – жидкий водород, выхлоп от сгорания которого – водяной пар. Сдерживающим фактором в разработке ГПВРД является отсутствие средств разгона воздуха или самого аппарата в процессе исследований до скорости более М = 10.

А пока НПО "Молния" во главе с его главным конструктором Глебом Лазино-Лазинским предлагает проект МАКС – уникальную систему, способную с малыми затратами осваивать ближний космос. В качестве носителя-разгонщика предлагается использовать самолет Ан-225 (Мрия).

В заключение второй главы приведем схему диапазонов скоростей рассмотренных летательных аппаратов (рис. 2.32)

Рис. 2.32 Диапазоны скоростей летательных аппаратов

Глава 3

ПРИБОРЫ ДЛЯ ИЗМЕРЕНИЯ СКОРОСТИ И ВЫСОТЫ ПОЛЕТА

3.1. Общие определения

Современный самолет оборудован множеством технических устройств для определения его местоположения, для управления воздушным движением, для решения светотехнических задач, а также для контроля работы силовой установки. В [4] даются общие определения оборудования по назначению.

Комплекс – совокупность информационных систем, вычислительно-програм­миру­ющих средств, систем индикации, сигнализации и управления, предназначенных для совместного выполнения группы задач общего функционального назначения. Примером комплекса может быть информационный комплекс высотно-скоростных параметров (ИКВСП) для самолета Як-42.

Система – совокупность взаимосвязанных изделий авиационной техники, предназначенных для выполнения заданных функций. Характерным примером системы может быть система воздушных сигналов – СВС.

Прибор – устройство, имеющее самостоятельное эксплуатационное значение и обеспечивающее измерение и индикацию одного или нескольких параметров. Характерными примерами являются указатель скорости УС-2, измеряющий и индицирующий (указывающий) значение приборной скорости; указатель угла атаки и перегрузки УАП-5. Показания прибора воспринимаются человеком с помощью органов чувств.

Индикатор – средство отображения информации о количественном или качественном значении информации. Примером количественного индикатора может быть циферблат со шкалой и стрелкой как у прибора УС-2. Примером качественного индикатора может быть индикатор, отображающий информацию по принципу "не более заданного", "не меньше заданного", "находится в пределах заданного". Такая индикация применяется в системе безопасности СПКР. Силуэт самолета на фоне неподвижной шкалы тоже является качественной индикацией.

Сигнализатор – прибор, обеспечивающий отображение о соответствии или несоответствии параметра, системы или объекта требуемому значению или состоянию в виде визуальных, звуковых и тактильных сигналов. Примерами могут быть светосигнализаторы ТС-3, ТС-5, содержащие в своих табло определенные надписи.

Датчик – измерительное устройство для выработки сигнала о текущем значении измеряемого параметра. В отличие от прибора сигналы датчика воздействуют на звенья системы, минуя человека.

Основное оборудование – обязательное оборудование, необходимое для обеспечения основных заданных функций в ожидаемых условиях эксплуатации.

Резервное оборудование – обязательное оборудование, необходимое для обеспечения нормального выполнения ограниченного количества функций с приемлемыми точностными характеристиками при отказе отдельных видов основного оборудования или невозможности его использования. К такому оборудованию на борту гражданского самолета относятся механический указатель скорости УС-2, магнитный компас КИ-13, механический высотомер, механический вариометр. Они применяются на тот случай, когда отказывает по каким-либо причинам экранная основная индикация в системе СЭИ.

Все оборудование самолета по назначению можно классифицировать на следующие группы согласно [4]: пилотажно-навигационное оборудование (ПНО); средства контроля работы силовой установки; радиотехническое оборудование навигации, посадки и УВД; светотехническое оборудование, радиосвязное оборудование, электротехническое оборудование, оборудование внутрикабинной сигнализации.

Пилотажно-навигационное оборудование – это совокупность измерительных, вычислительных и управляющих систем и устройств и систем отображения информации на борту самолета, предназначенных для решения задач пилотирования, навигации и самолетовождения в целом от взлета до посадки и выдачи информации потребителям. К физическим параметрам ПНО относятся: географическая широта; географическая долгота; высота полета; скорость полета; вертикальная скорость; угол курса; угол тангажа; угол крена; угловые скорости вращения самолета вокруг осей x, y, z; линейные ускорения вдоль осей x, y, z.

Для индикации основной информации ПНО на современных самолетах типа Ту-204 устанавливаются комплексные пилотажные индикаторы КПИ для первого и второго пилотов. Количество образцов каждого типа оборудования, каждого типа самолета должно быть минимальным, но достаточным для надежного полета в ожидаемых условиях [4]. Технические требования, нормы и методы испытаний ПНО изложены для гражданских самолетов и вертолетов в приложениях восемь к НЛГС и НЛГВ [5, 7]. Из состава ПНО подробнее рассмотрим измерители скорости полета.



Скачать документ

Похожие документы:

  1. ОГЛАВЛЕНИЕ Введение (2)

    Литература
    ОГЛАВЛЕНИЕВведение ..……………….…………………………………………………….….…3 Глава 1. Тактика ... аппаратуры танков и БМП, авиационных и артиллерийских приборов и боеприпа­сов. Кроме того, ... группировки войск четко функционирующей системы управления авиацией опе­ративного и, ...
  2. Оглавление введение 7 раздел 1 угроза биотерроризма в современном мире 8

    Исследование
    ... working mechanisms. ОГЛАВЛЕНИЕВВЕДЕНИЕ…………………………………………………………………………7 Раздел 1. ... 62 3.1. Проблемы системы биологической безопасности….……………..62 ... к цели: ракеты, авиационные бомбы и контейнеры, ... специальной техникой, приборами, аппаратурой, медицинским ...
  3. Введение Error Reference source not found (2)

    Документ
    ОглавлениеВведение Error: Reference ... видах экономической деятельности в информационных системах и ресурсах, едином государственном регистре ... - производство бортовых авиационныхприборов, систем воздушной навигации, приборов и аппаратуры для ...
  4. Реферат Подготовка и начало Второй Мировой войны (документы свидетельствуют) Оглавление Введение 3 I Причины Второй Мировой войны 5 II Виновники войны 10 II 1 Кто привёл Гитлера к власти 10 II 2 Вступление СССР в войну 13 II 3 Подготовленность

    Автореферат диссертации
    ... ) Оглавление: Введение ... приборами ... системы званий, две системы ... бомбардировочные дивизии. 3-й авиационный корпус – в ...
  5. Введение 6 глава 1 идея и этапы создания международной космической станции 9 1 1 идея создания мкс 9 1 2 история создания проекта мкс 10

    Документ
    ОглавлениеВведение 6 Глава 1. Идея ... радиолинии, системы телеметрического контроля и радиотехнической системы стыковки, приборы управления ... 5 Авиационно-космические системы. Москва, Издательство МАИ, 1997. 6 Авиационно-космические системы. Москва ...

Другие похожие документы..