textarchive.ru

Главная > Лекция


Лекция № 1. Предмет и задачи физиологии, ее связи с другими дисциплинами. Краткая история развития физиологии как науки. Методы физиологии. Общий план строения нервной системы и ее физиологическое значение. Основные физиологические понятия.

"Наша способность к самообмену по поводу работы собственного мозга почти безгранична главным образом потому, что часть, о которой мы можем сообщить, составляет лишь ничтожную долю того, что происходит у нас в голове".

Фрэнсис Крик

Физиология (греч. physis - природа) - это наука изучающая функции организма человека, его органов и систем, а также механизмы регуляции этих функций.

Вместе с анатомией физиология является основным разделом биологии.

Современная физиология представляет собой сложный комплекс общих и специальных научных дисциплин, таких как: общая физиология, физиология человека нормальная и патологическая, возрастная физиология, физиология животных, психофизиология и др.

Физиология изучает процессы жизнедеятельности, протекающие в организме на всех его структурных уровнях: клеточном, тканевом, органном, системном, аппаратном и организменном. Она тесно связана с дисциплинами морфологического профиля: анатомией, цитологией, гистологией, эмбриологией, так как структура и функция взаимно обусловливают друг друга. Физиология широко использует данные биохимии и биофизики для изучения функциональных изменений, происходящих в организме, и механизма их регуляции. Физиология также опирается на общую биологию и эволюционное учение, как основы для понимания общих закономерностей.

Для специалистов-психологов изучение физиологии имеет важное теоретическое и практическое значение. Работа их не может быть полноценной, если они не будут хорошо знать функциональные особенности нервной системы и закономерности высшей нервной деятельности человека.

 Физиология прошла длинный и сложный путь развития, включающий в себя 7 периодов (смотри 1 лекцию по анатомии). Как и анатомия она возникла из потребностей медицины, постепенно расширяя свое прикладное значение для других наук: философии, педагогики, психологии.

Первоначальные представления о функциях организма были сформулированы врачами и учеными Древней Греции (Аристотель, Гиппократ), Древнего Рима (Гален), Древнего Китая (Хуанди, Бянь Цяо), Древней Индии и др. стран. Изучение ими строения тела проводилось одновременно с исследованиями функций организма.

В эпоху Средневековья естествознание было подчинено церкви и Святейшей инквизиции, поэтому период от 2 до 15 века называют периодом "сумерек истории".

В эпоху Возрождения в естествознании и медицине большое значение начали придавать опыту и наблюдению. Дальнейшее развитие физиологии связано с успехами анатомии, где работы Леонардо да Винчи и Андреаса Везалия подготовили почву для открытий в области физиологии.

Самостоятельной научной дисциплиной физиология стала к началу 17 века. Здесь важнейшее значение имело открытие Вильямом Гарвеем кругов кровообращения, исследование капилляров Марчелло Мальпиги, формулирование Рене Декартом понятия о рефлексе, учение Джакомо Борелли о механике движений. Большую роль сыграли в развитии физиологии успехи физики и химии. Правда, это нередко приводило к ложным механистическим выводам. Механицизм отождествлял физиологию с физикой и химией, способствовал появлению метафизического направления в науке, отрицавшего всякое развитие в природе. В биологии появилось антинаучное направление - витализм, утвердивший наличие в организме нематериальной "жизненной силы".

Значительного расцвета физиология достигла после великих открытий Ломоносова (закон сохранения вещества и превращения энергии), Шванна и Шлейдена (клеточная теория), Дарвина (эволюционное учение). В 19 и особенно 20 веке физиология обогатилась новыми открытиями. Клод Бернар создал представление о гомеостазе, изучил роль НС в регуляции тонуса сосудов и углеводного обмена. Дюбуа-Реймон явился основоположником электрофизиологии. Шеррингтон изучил физиологию спинного мозга. Капитальные исследования физиологии ВНС выполнил Кэннон. Создание приборов для исследования роли НС в регуляции дыхания, кровообращения и др. систем позволило выяснить, что процесс возбуждения всегда связан с электрическими изменениями в клетках и тканях. В противовес виталистическому направлению в физиологии получает развитие нервизм - прогрессивное направление, которое разработано русскими физиологами Сеченовым, Павловым, Боткиным, Бехтеревым, Введенским, Ухтомским.

Работа Сеченова "Рефлексы головного мозга" и павловское учение о сигнальных системах стали фундаментальной основой современной мировой физиологии.

В настоящее время физиологические исследования проводят в крупных научных институтах и лабораториях, в которых трудятся специалисты разных профилей (морфологи, биофизики, биохимики, психологи, математики, инженеры, биокибернетики).

Если еще недавно в физиологии применяли сравнительно простые приборы - кимографы, индукционные катушки, то сейчас применяется сложная аппаратура - электрокардиографы, спирографы, электроэнцефалографы, тепловизоры, компьютерная техника.

Большая заслуга в развитии современной физиологии принадлежит последователям и ученикам Павлова - Орбели, Быкову, Черниговскому, Анохину и др.

Академик Орбели создал учение об адаптационно-трофической функции симпатической нервной системы и внес большой вклад в развитие эволюционной и возрастной физиологии. Академик Быков исследовал влияние коры мозга на внутренние органы и установил два механизма регуляции их работы: пусковой и коорригирующей (исправляющей), соответственно потребностям организма в данных условиях. Академик Черниговский создал представление о двусторонней (прямой и обратной) связи внутренних органов с корой мозга, возглавлял исследования в области космической физиологии и медицины. Академик Анохин создал учение о функциональных системах организма, в котором изложены современные представления об организации поведения живых организмов.

Процесс физиологической регуляции является основой самоудовлетворения потребностей живого организма. Потребности удовлетворяются благодаря деятельности управляющих систем - нервной и эндокринной.

Для удовлетворения своих потребностей в условиях изменений внешней среды организму необходимо:

1. ставить определенные задачи;

2. достигать намеченного результата.

Согласно учению Анохина, именно полезный результат является фактором определяющим поведение и образующим функциональную систему (ФУС). ФУС формируется как группа взаимосвязанных нейронов, обеспечивающих достижение полезного результата. В задачу ФУС входит выявление и оценка результата действия.

Компонентами ФУС являются:

1 - полезный результат,

2 - рецепторы,

3 - нервный центр,

4 - исполнительные механизмы,

5 - пути обратной связи для сообщения результата действия.

Отчетность исполнительных органов перед центрами обеспечивает оценку результата и внесение поправок в работу ФУС, если результат не достигнут.

ФУС регуляции движений

 Физиология - это экспериментальная наука. Она использует два основных метода: наблюдение и эксперимент.

Наблюдение - основной метод познания окружающего и используется в любом научном исследовании. Его недостатком является пассивность исследователя, который может выяснить лишь внешнюю сторону явления, например - работу (функцию) органа. Механизм регуляции работы органа можно выяснить только опытным путем.

Эксперимент позволяет исследователю создать определенные условия, в которых выясняются количественные и качественные характеристики того ил иного явления.

Эксперимент может быть острым или хроническим. Острый опыт (вивисекция) позволяет в короткое время изучить какой-либо регуляторный механизм, срабатывающий в экстремальных для подопытного организма ситуациях. Хронический эксперимент позволяет длительное время исследовать механизмы регуляции в условиях нормального взаимодействия организма и среды.

В опытах на животных используют хирургические методы - экстирпацию (удаление) или пересадку органов, вживление электродов, датчиков. Объективным методом является метод телеметрии, позволяющий регистрировать параметры процесса или явления на расстоянии.

Экспериментальные исследования в последние годы проводят с помощью сложной оптической, радиотехнической, электронной аппаратуры, позволяющей, одновременно изучать десятки функций, их изменения во взаимодействии, т.е. комплексно.

Обработка полученного массива данных происходит с применением методов математической статистики и компьютерной техники.

Нервная система состоит из центрального и периферического отделов. ЦНС включает в себя головной и спинной мозг, а ПНС - это все нервы и узлы, лежащие за пределами ЦНС.

Различают также соматическую и вегетативную нервную систему. Первая регулирует работу скелетных мышц и органов чувств. Вторая регулирует работу внутренних органов и желез.

Выделение вышеназванных отделов в нервной системе является условным, удобным для изучения в определенной логической последовательности. В действительности нервная система представляет собой анатомически и функционально единое целое, элементарной основой которого являются нейроны.

Нервная система является ведущей физиологической системой организма, главной системой управления. Это подтверждается тем, что НС плода начинает функционировать задолго до его рождения (Сайенс Ньюс, № 16, 1984).

Функции нервной системы можно поделить на два типа: высшие и низшие.

Низшая нервная деятельность представляет собой процессы регуляции работы органов и систем в организме.

Высшая нервная деятельность включает в себя те функциональные механизмы мозга, которые обеспечивают организму соответствующий контакт с окружающей средой. Высшие функции лежат в основе психической деятельности человека, формировании свойств личности: темперамента, характера, способностей, потребностей и интересов. Высшая нервная деятельность требует оперативного и адекватного изменения в режиме работы внутренних органов. Следовательно, высшая и низшая нервная деятельность накладываются друг на друга и должны рассматриваться в тесном гармоничном единстве.

 Активность животных и человека проявляется в виде функций и физиологических актов.

Функция это специфическая деятельность клеток, тканей, органов. Например, функцией мышцы является сокращение, железы - секреция, нейронов - генерирование и проведение импульсов. За счет изменения функций организм приспосабливается к изменениям условий существования.

Все функции можно разделить на:

1) соматические (животные), которые осуществляются за счет деятельности скелетных мышц, иннервируемых СНС;

2) вегетативные (растительные), которые связаны с обменом веществ, ростом и размножением. Они осуществляются за счет работы внутренних органов, иннервируемых ВНС.

Физиологический акт - сложный процесс, который осуществляется с участием различных систем организма (физиологические акты дыхания, пищеварения, выделения, дыхания и т.д.). Например, физиологический акт пищеварения включает в себя возбуждение сенсорных отделов ЦНС (зрительных, обонятельных, вкусовых, тактильных), двигательных центров (добывание, обработка и приготовление пищи), секреторного аппарата ЖКТ (выделение пищеварительных соков), гладких мышц ЖКТ (моторика, перистальтика), кишечного эпителия (всасывание). Таким образом, акт пищеварения обеспечивается проявлением сложных и многочисленных функций на клеточном, тканевом, органном и системном уровнях, которые включаются в функциональную систему (ФУС) и обеспечивают достижение полезного результата.

Лекция № 2. Понятие о возбудимых тканях. Возбуждение. Возбудимость. Проводимость. Рефрактерность и лабильность. Физиологические свойства нервных волокон (безмиелиновых и миелиновых). Утомляемость нервного волокна. Физиологические свойства синапсов.

"Все регулируется, течет по расчищенным руслам, совершает свой кругооборот в соответствии с законом и под его защитой".

И. Ильф и Е. Петров "Золотой теленок"

 Все клетки и ткани живого организма под действием раздражителей переходят из состояния относительного физиологического покоя в состояние активности (возбуждения). Наибольшая степень активности наблюдается в нервной и мышечной ткани.

Главными свойствами возбудимых тканей являются: I. возбудимость, II проводимость, III рефрактерность и лабильность, которые связаны с одним из самых общих свойств живого - раздражимостью.

Изменения в окружающей среде или организме называют раздражителями, а их действие - раздражением.

По природе раздражители бывают: механические, химические, электрические, температурные.

По биологическому признаку раздражители делятся на:

1. адекватные, которые воспринимаются соответствующими специализированными рецепторами (глаза - свет, уха - звук, кожа - боль, температура, прикосновение, давление, вибрация);

2. неадекватные, к которым специализированные рецепторы не приспособлены, но воспринимают их при чрезмерной силе и длительности (удар - глаз - свет).

Наиболее общим, адекватным и естественным раздражителем для всех клеток и тканей организма является нервный импульс.

Основные физиологические свойства нервной ткани (возбудимость, проводимость, рефрактерность и лабильность) характеризуют функциональное состояние нервной системы человека, определяют его психические процессы.

 I. Возбудимость - способность живой ткани отвечать на действие раздражителя возникновением процесса возбуждения с изменением физиологических свойств.

Количественной мерой возбудимости является порог возбуждения, т.е. минимальная величина раздражителя, способная вызвать ответную реакцию тканей.

Раздражитель меньшей силы называют подпороговым, а большей - надпороговым.

Возбудимость представляет собой, в первую очередь, изменение обмена веществ в клетках тканей. Изменение обмена веществ сопровождается переходом через клеточную мембрану отрицательно и положительно заряженных ионов, которые изменяют электрическую активность клетки. Разность потенциалов в покое между внутренним содержимым клетки и клеточной оболочкой, составляющая 50-70 мВ (миллиВольт) называется мембранным потенциалом покоя.

Основой этого состояния клетки является избирательная проницаемость мембраны по отношению к ионам К+ и Na+. Ионам Na+, находящимся во внеклеточной среде, через мембрану в клетки путь закрыт, а К+ свободно проникает через поры клеточной мембраны из цитоплазмы клетки в тканевую жидкость. В результате в цитоплазме остаются отрицательно заряженные ионы, а на поверхности мембраны накапливаются положительно заряженные ионы К+ и Na+.

При возбуждении клетки проницаемость ионов Na+ резко увеличивается, и они устремляются в цитоплазму, снижая потенциал покоя до нуля, а затем увеличивая разность потенциалов противоположного значения до 80-110 мВ. Такое кратковременное (0,004-0,005 сек) изменение разности потенциалов называется потенциалом действия(спайком); англ. spike - острие.

Вслед за этим нарушенное равновесие ионов вновь восстанавливается. Для этого существует специальный клеточный механизм - "натрий-калиевый насос", который обеспечивает активное "выкачивание" Na+ из клетки и «нагнетание» в нее К+. Таким образом, существуют 2 типа движения ионов через клеточную мембрану:

1 - пассивный ионный транспорт по градиенту концентрации ионов;

2 - активный ионный транспорт против градиента концентрации, осуществляемый "натрий-калиевым насосом" с затратой энергии АТФ.

Вывод: возбуждение нервной клетки связано с изменением обмена веществ и сопровождается появлением электрических потенциалов (нервных импульсов).

Проводимость - способность живой ткани проводить волны возбуждения - биоэлектрические импульсы.

Для обеспечения гомеостатического единства все структуры организма (клетки, ткани, органы и т.д.) должны иметь возможность пространственного взаимодействия. Распространение возбуждения от места его возникновения до исполнительных органов - один из основных способов такого взаимодействия. Возникший в месте нанесения раздражения потенциал действия является причиной раздражения соседних, невозбужденных участков нервного (или мышечного) волокна. Благодаря этому явлению волна потенциала действия создает ток действия, который распространяется по всей длине нервного волокна. В безмиелиновых нервных волокнах возбуждение проводится с некоторым затуханием - декрементом, а в миелиновых нервных волокнах - без затухания. Проведение возбуждения также сопровождается изменением обмена веществ и энергии.

 III. Рефрактерность - временное снижение возбудимости ткани, возникающее при появлении потенциала действия. В этот момент повторные раздражения не вызывают ответной реакции (абсолютная рефрактерность). Она длится не более 0,4 миллисекунды, а затем наступает фаза относительной рефракторности, когда раздражение может вызвать слабую реакцию. Эта фаза сменяется фазой повышенной возбудимости - супернормальности.

Такая динамика возбудимости обусловлена процессами изменения и восстановления равновесия ионов на мембране клетки.

Профессор Н.Е. Введенский исследовал особенности этих процессов и установил, что возбудимые ткани могут отвечать разным числом потенциалов действия на определенную частоту раздражений. Он назвал это явление лабильностью (функциональной подвижностью).

Лабильность - свойство возбудимой ткани воспроизводить максимальное число потенциалов действия в единицу времени.

Максимальная лабильность - у нервной ткани. Частота раздражений, вызывающая максимальную реакцию называется оптимальной (лат. optimum - наилучший), а вызывающая угнетение реакции - пессимальной (лат. pessimum - наихудший).

*Нервное волокно - до 1000 имп./сек, мышца - 200-250 имп./сек., синапс - до 100-125 имп./сек.

Пессимум - активная реакция ткани, направленная на защиту ее от чрезмерных раздражений. Это одна из форм проявления торможения. Возбуждение и торможение это противоположные по значению саморегулирующиеся процессы, которые устанавливают "золотую середину" уровня отношений организма со средой.

Нервные волокна (отростки нервных клеток) обладают всеми свойствами возбудимых тканей, а проведение нервных импульсов является их специальной функцией. Скорость проведения возбуждения зависит от:

1 - диаметра волокон (толще  быстрее),

2 - строения их оболочки.

Безмиелиновые (безмякотные) волокна покрыты только леммоцитами (шванновскими клетками). Между ними и осевым цилиндром (аксоном нейрона) имеется щель с межклеточной жидкостью, поэтому, клеточная мембрана остается неизолированной. Импульс распространяется по волокну со скоростью всего 1-3 м/сек.

Миелиновые волокна покрыты спиральными слоями шванновских клеток с прослойкой миелина - жироподобного вещества с высоким удельным сопротивлением. Миелиновая оболочка через промежутки равной длины прерывается, оставляя оголенными участки осевого цилиндра длиной  1 мкм.

Из-за такого строения электрические токи могут входить в волокна и выходить из них только в области неизолированных участков - перехватов Ранвье. При нанесении раздражения в ближайшем перехвате возникает деполяризация, а соседние перехваты поляризованы. Между ними возникает разность потенциалов, которая приводит к появлению круговых токов действия.

Таким образом, импульс в миелиновом волокне проходит скачкообразно (сальтаторно) от перехвата к перехвату. Возбуждение при этом распространяется без затухания, а скорость проведения импульса достигает 120-130 м/сек.

При нанесении раздражения на нервное волокно происходит двустороннее распространение возбуждения - в центростремительном и центробежном направлении. Это не противоречит принципу одностороннего проведения импульсов, и объясняется первичностью появления возбуждения в рецепторах или нервных центрах, а также наличием синапсов. Нейротрансмиттер (медиатор) содержится только в пресинаптическом аппарате и переносит потенциал только однонаправленно (см. лекцию по анатомии № 2).

Возбуждение проводится не только в нужном направлении, но и по одному изолированному волокну, не распространяясь на соседние волокна. Это обуславливает строго координированную рефлекторную деятельность. Например, седалищный нерв диаметром до 12 мм несет в себе тысячи нервных волокон (миелиновых и безмиелиновых, чувствительных и двигательных, соматических и вегетативных). В случае неизолированного проведения возбуждения наблюдалась бы хаотическая ответная реакция.

Изолированное проведение возбуждения в миелиновых волокнах обеспечивается миелиновой оболочкой, а в безмиелиновых - высоким удельным сопротивлением окружающей межклеточной жидкости (отсюда и затухание потенциала).

 Н.Е. Введенский в 1883 году впервые установил, что нерв малоутомляем. Малая утомляемость нервных волокон объясняется тем, что энергетические затраты в них при возбуждении незначительны, а процессы восстановления протекают быстро. В организме нервные волокна работают также с недогрузкой. Например, двигательное волокно высоколабильно и может проводить до 2500 имп./сек. Из нервных же центров поступает не более 50-40 имп./сек.

Вывод: практическая неутомляемость нервных волокон связана с небольшими энергетическими затратами, с высокой лабильностью нервных волокон, с постоянной недогрузкой волокон.

Синапсы (см. строение в лекции по анатомии № 2) обладают следующими физиологическими свойствами:

1 - одностороннее проведение возбуждения, которое связано с особенностями строения самого синапса,

2 - синаптическая задержка, которая связана с затратой времени на освобождение и диффузию нейротрансмиттера через синаптическую щель, временем взаимодействия нейространсмиттера с соответствующим белком-рецептором.

 В 1901 году Н.Е. Введенский ввел в физиологию нервной системы понятие о парабиозе. Эта своеобразная реакция на повреждающее воздействие оказалось универсальной для возбудимых тканей. При контузии нервного волокна, отравлении его фенолом, кокаином, поражением электротоком резко снижается лабильность. Парабиоз протекает в 3 стадии:

1 - провизорная (уравнительная) - мышца отвечает одинаковыми сокращениями как на сильные, так и на слабые импульсы, проводимые по поврежденному нерву,

2 - парадоксальная - частые импульсы вызывают слабые сокращения, а редкие - более или менее сильные сокращения,

3 - тормозная - теряется проводимость по нерву из-за блокирующего возбуждения (деполяризации) поврежденного участка нервного волокна.

Лекция № 3. Эмбиогенез нервной системы. Нервная пластинка, нервный желобок, нервная трубка. Ганглиозная пластинка. Стадия трех мозговых пузырей. Стадия пяти мозговых пузырей. Некоторые аспекты развития мозга в постнатальный период.

"С тех пор, как ваш мозг предается изучению наук, серьезным вычислениям, он увеличился в объеме".

А. Дюма "Виконт де Бражелон"

Для живых организмов, начиная от плоских червей и до высших позвоночных животных характерна трехслойность, т.е. развитие из трех зародышевых листков (экто-, мезо- и эктодермы).

 НС человека развивается из наружного зародышевого листка - эктодермы. На дорзальной стороне туловища зародыша клетки эктодермы дифференцируются и формируют медуллярную (нервную) пластинку.

Первоначально она состоит из одного слоя клеток, которые в дальнейшем разделяются на:

1 - нейробласты (из которых развиваются нейроны);

2 - спонгиобласты (из которых развивается нейроглия).

Вследствие неравномерности деления клеток пластинка прогибается, постепенно превращаясь в нервный желобок. Рост его боковых отделов приводит к сближению, а затем, и к смыканию краев желобка. Так формируется нервная трубка. Сращение в первую очередь происходит в переднем (краниальном), а потом и в заднем (каудальном) отделах нервной трубки. На переднем и заднем концах трубки остаются открытыми небольшие отверстия - нейропоры. После сращения нервная трубка отделяется от экдотермы и погружается в мезодерму. Полость трубки называется невроцель.

К моменту смыкания трубки она состоит из трех слоев. Внутренний слой образован эпендимоцитами, которые выстилают в дальнейшем полости желудочков мозга и центрального канала спинного мозга. Средний (плащевой) слой будет формировать серое вещество мозга. Наружный слой превращается в белое вещество, так как содержит отростки клеток. Боковые (латеральные) отделы трубки развиваются более интенсивно, при этом дорзальный и вентральный отделы остаются в глубине. Так образуются передняя и задняя срединные борозды, а нервная трубка становится билатерально симметричной. Со стороны невроцели имеются небольшие продольные боковые бороздки , которые делят боковые отделы трубки на вентральную (основную) и дозральную (крыльную) пластинки.

Из основной пластинки образуются передние канатики белого вещества и передние столбы серого вещества. Отростки клеток передних столбов выходят из нервной трубки, образуя передние корешки (двигательные) спинного мозга. Из крыльной пластинки развиваются здание канатики белого вещества и задние столбы серого вещества.

 Еще на стадии нервного желобка в его боковых отделах выделяются боковые клеточные тяжи - медуллярные гребешки. Эти гребешки формируют между экдотермой и нервной трубкой ганглиозную пластинку. В последствии она вторично разделяется на два ганглиозных валика, которые смещаются по бокам нервной трубки и сегментируются. Эти парные сегменты превращаются в спинномозговые узлы, соответственно сегментам туловища, а также в чувствительные узлы черепных нервов. Клетки, выселившиеся из ганглиозных валиков, формируют периферические отделы ВНС.

В краниальном отделе нервной трубки образуется расширение (зачаток головного мозга). Остальные отделы нервной трубки формируют спинной мозг. Нейробласты спинномозговых узлов (биполярные клетки) имеют центральные отростки, которые прорастают в спинной мозг и образуют задние корешки (чувствительные). Периферические отростки нейробластов прорастают в ткани и заканчиваются там рецепторами различных типов.

В каудальном отделе нервная трубка редуцируется (укорачивается) и постепенно суживается, образуя концевую нить (filum terminale). Позвоночник эмбриона удлиняется более интенсивно, чем спинной мозг, поэтому корешки спинномозговых нервов в нижних отделах меняют горизонтальное направление на косое, а затем и вертикальное, образуя конский хвост (cauda equina). Нижний конец спинного мозга у новорожденного "поднимается" на уровень III поясничного позвонка.

 Расширение краниального отдела нервной трубки к 4-м неделям эмбрионального развития превращается в три мозговых пузыря:

1 - prosencephalon (передний мозг);



Скачать документ

Похожие документы:

  1. НАУКИ О БИОЛОГИЧЕСКОМ МНОГООБРАЗИИ

    Программа дисциплины
    ... Историяразвития анатомии растений. Задачи и методы изучения структуры растений. Значение анатомического метода для других ботанических дисциплин (систематики, палеоботаники, физиологии ...
  2. Общая характеристика методологии науки

    Документ
    ... общеепонятие и выполняет методологическую функцию. В.П. Зинченко и С.Д. Смирнов (1983) отмечают, что зарождение и развитиенаукисвязано с формированием предметанауки ...
  3. Общая характеристика методологии науки

    Документ
    ... общеепонятие и выполняет методологическую функцию. В.П. Зинченко и С.Д. Смирнов (1983) отмечают, что зарождение и развитиенаукисвязано с формированием предметанауки ...
  4. Учебно-методический комплекс дисциплины «возрастная анатомия и физиология» специальности

    Учебно-методический комплекс
    ... разделов дисциплин Тема 1. Предмет возрастная анатомия и физиологиякакнаука. Ее место в формировании дефектолога. Предмет анатомия и физиология. Связь с другимидисциплинами, историяразвития, методы исследования. Понятие о возбудимых ...
  5. Примерная основная образовательная программа (7)

    Документ
    ... . Основныепонятияфизиологии. Предмет, задачи и методыфизиологии. Организм человека и его основныефизиологические функции. Развитие и рост; организм как целое единство. Понятие о гомеостазе. Физиологическая функция ...

Другие похожие документы..